Please do not redistribute these slides
without prior written permission

Applications

Printer

Hard Drive

CS3650

Computer Systems
Dr. Alden Jackson

Virtualization Concurrency Persistence Appendices
12 Dialogue 25 Dialogue 35 Dialogue Dialogue
13 Address Spaces 26 Concurrency and Threads %29 36 /O Devices Vi
27 Thread API 37 Hard Disk Drives Dialogue
2 Introduction Direct Execution Address Translation 28 Locks 38 Redundant Disk Arrays (RAID) Monitors
7 CPU Scheduling 39 Files and Directories Dialogue
8 Multi-level Feedback 17 e iti 40 File System Implementation Lab Tutorial
" 9 Lottery Scheduling <4¢ 18 Introduction to Paging 31 Semaphores 41 Fast File System (EES) Systems Labs
Operating System 10 Multi-CPU Scheduling 19 Translation Lookaside Buffers SESRREIy SRS 42 FSCK and Journaling g6 Labs
11 Summary 20 Advanced Page Tables 33 Event-based Concurrency. 43 Log:structured File System (LES)
21 Swapping: Mechanisms 34 Summary, 44 Flash-based SSDs
22 Swapping; Policies 5 rity and Protection
3 Case Study: VAX/VMS
24 Summary, 47 Dialogue
Hardware 48 Distributed Systems

49 Network File System (NES)
50 Andrew File System (AFS)
51 Summ

Lecture 1 - Logistics &
Overview

Professor Alden Jackson, PhD

About your Instructor

e | grew up in Maryland, just outside Washington, DC.
e BA in Physics from the University of Dallas.

e | enjoyed modeling and simulating physical systems = MS in EE at Howard

University.
o Researching image processing and HW support for graphics libraries
o Ran aresearch computing center

e PhD at the University of Delaware, where | found networking

e Primarily interested in ultra high speed network and router architecture,
transport protocols, reliability of massive distributed systems, network
security and privacy, and Internet censorship mitigation (refraction
networking)

10

https://www2.howard.edu/
https://www2.howard.edu/
https://www.udel.edu/
https://refraction.network/
https://refraction.network/

Places where | worked on systems...

B BN

TECHNOLOGIES

So what is this course?

Computer Systems course in Computer Science

e Arough visualization of where the course is in the curriculum

Height CS 5008 Content

Siﬁfhx {r CS 5600 Content

CS 3650 Content

Introduction to Systems More Advanced Topics

14

My goal is to get everyone
through & not be intimidated!

You will then be ready to take on
CS5600!

15

Roughly Speaking this course has a few ‘modules’

1. Computer Systems Fundamentals
a. Terminal, C, Assembly, Compilers, Tools

2. \Virtualization (is my code the only thing running on login?)
a. The Process

3. Computer Architecture (Locality, Speed, Memory Abstractions)
a. Memory/Cache/Virtual Memory

4. Concurrency (managing shared resources)
a. Threads/Locks/Semaphores
b. Parallelism

5. Persistence (where do my files go when the power is turned off?)
a. File Systems
b. Storage Devices

6. Other Selected Topics Throughout The Semester

a. Debugging, Instrumentation, Safety 0

Computer Systems Fundamentals
a. Terminal, C, Assembly, and Compilers

Virtualization T
a. Processes
Computer Architecture
a. Memory/Cache/etc
Concurrency
a. Threads/Locks/Semaphores
b. Parallelism
Persistence
a. File Systems
b. Storage Devices —

Other Selected Topics

a. Debugging/Instrumentation/Final

Roughly Speaking this course has a few ‘modules’

Note Operating Systems is the
biggest chunk. Most things we do

in the course you should view
through the lens of an operating
system.

17

Why use the operating system as the lens to learn systems?
OS as Middleware

e |t abstracts low-level details and provides high-level interfaces

e Middleware is crucial because it allows programmers to build powerful software without reinventing low-level
mechanisms.

Bridging Hardware and Applications
e The OS connects the physical machine to user programs, transforming raw hardware into usable
resources.
e It manages CPUs, memory, storage, and networks, ensuring that applications can run safely and efficiently.
Integration of Knowledge. Studying OS ties together all layers of computer science
e Hardware/architecture: instruction sets, memory hierarchies, 1/0 devices.

e Systems programming: C, assembly, and low-level debugging.
e Algorithms & data structures: scheduling, synchronization, paging, file systems. 18

Computer Systems = Magic?
e | hate to break it to you, but there is no magic in computers.

e Computers are just 1’s and 0’s. In this course, we are going to look at 1’s
and 0’s, and how to combine them to create different abstractions.

e That is where the magic comes in—through the creativity and the art of
computer science.

e Computer Science is an art!

19

Course Goals

e We will review the syllabus (which on Canvas) in detail
@ our next class

e Reading the syllabus is part of your 1st assignment

e https://khoury-cs3650.qithub.io/syllabus.html

22

Course Materials

e Bringing your laptop is highly recommended (especially on lab days)

e | do not care what operating system you use on your computer
o You will need access the Internet and a terminal emulation program for SSH
o Mac (even with Apple Silicon) , Linux (Ubuntu, Debian, etc.), Windows
m Chromebook and Surface machines are less useful
o Inthe case that you do not have a laptop, Khoury has/had VDI systems that are available
m Reach out to me about labs, where we going to try to work together in class in parallel

e However, we will use a Linux system for much of the course

I

24

Course Text

I Operating Systems:
OSTEP)
(both free)

e |ow-Level Programming: C, Assembly, and
Program Execution on Intel® 64 Architecture

e (Recommended texts)
o C Programming Language Book
o Computer Systems: A Programmer's
Perspective

e Inspiration drawn from both of these texts.
e Labs and lectures will also have web
resources to check out!

Operating
Systems :

> Easy Pi

Remazi Arpaci-Dusseau
. Andrea Arpaci-Dusseau” -

COMPUTER SYSTEMS

>
BRYANT ¢ O'HALLARON

SECOND EDITION

leE

//‘45\

‘\,\G\

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M. RITCHIE

il

Low-Level
Programmmg

\\\\\\\

nbly, d Program Executio
64 Architec ure

http://pages.cs.wisc.edu/~remzi/OSTEP/
https://diveintosystems.org/
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027
https://www.amazon.com/Low-Level-Programming-Assembly-Execution-Architecture/dp/1484224027

Teaching Style

e Everyone learns differently--optimize as needed along the way
o There will be lectures (for auditory learners)
o Many visuals on slides (for visual learners)
o Labs (for kinesthetic learners)

e This is a very hands on class, we will build things—lots of things
e There will be plenty of opportunity to make mistakes
Do not be afraid to be wrong
o The worst case scenario is we review

e Do ask questions!

o Occasionally | may even pause to write down the question
o |try to avoid randomly calling on students--but do participate!

e Come to office hours! Mine or the TAs or both!

26

Fair Warning

e Many “PowerPoint rules” will be harmed during this course
o i.e. There will be more than “7 words on a line” of text.

e Reason: we want the slides to be helpful for offline reading
o (I personally get confused when | read others slides online that are sparse or have no notes)

e Slides will be generally available after class

27

Teaching Assistants

e Welcome them!
o Dhairya Nirav Bhatt, Matthew Friedman, Manoj Harridoss, Manan Karnik, Ha Yoon Kim, Vishal
Kumar, Collin McKinley, Preksha Sunil Morbia, Santrupti Patil, Riley Post, Lukas Tegge, and
Christian Wu

e TA Office Hours: tbd

o InPerson
o Planis to have at least 2 TAs available 5-7PM M-F (assuming the Registrar OKs my room

requests)
o Start the week of Jan 12 (assuming the Registrar OKs my room requests)
o Until then please post your questions on Piazza

xS

E-mail: avoid it!

e Post general questions on Piazza
o See Canvas for the Piazza link
o Limit the use of private posts for general
questions
o Use cut and paste vs screen shots
o An active Piazza is a good sign in my
mind!
e Come to office hours (the prof’s or

the TA’s) to minimize e-mail

29

How to ask questions

Ask specific questions

e My code doesn’t work/compile (bad)

e |tried to do A and A doesn’t work in the following ways B (error msg), C
(debug info), D (certain behavior), etc. (good)

e To solve this issue with A, | tried E, F, G but did not work (good)

e Do not reveal solutions

30

Expectations

e You have taken some ‘programming’ related class.

o Today you will notice | am calibrating a bit! :)
o In the instance that you have not--you can still perform well.
m | expect you to do the readings BEFORE class

e You know at least one programming language well
o In this course we will use C and get exposed to x86-64 assembly
o Cis (still) the industry standas2

o (You can pick up whatever other fancy syster Yes | know there is GO, Erlang, Rust, etc.

32

Evaluation

This is a course about reading, designing and writing code. Therefore, most of
your evaluation will be on the quality of the code you produce and its

correctness.

The grading distribution used for this course is below.

e 10% exercises & quizzes (approx. 10)

e 60% homework assignments
o 40% assignments (approx. 8)
o 20% projects (2)

e 30% exams (2)

KK

Assignments and Projects

There will be approximately 8 programming assignments and two project
assignments throughout the semester.

The first 4 assignments are to be completed individually (“solo assignments”).

The remaining assignments and projects can be optionally completed in groups.
You will be responsible for selecting a partner to complete the assignments.

34

Projects

There will be two “projects”

These are longer (2 weeks), more substantial programming exercises that will
require you to plan and/or experiment more

As such, the description will be more vague than with assignments — you are
expected to do more reading, thinking, and asking

35

A note on teams

e You get to pick your partner
e You can partner up across sections
e You don’t have to keep the same partner for every project

Everyone

o L
& oS
@ : e &
(’ % F v, G &
:/cé\ < . &o@ @)
5 3
Download from 14421361
i m

36

Labs

We provide “labs” as a means to practice implementation techniques and tools

The idea is to provide exercises related to the week’s topic, which will prepare you
better for tackling that or next week’s assignment/project

These will be graded mostly on effort — the intention is to encourage you to do the
exercises as preparation for assignments

|deally, we would like to provide you some class time (30-60 minutes) every week
to work on the labs, but if we need more time to cover topics, the “lab” will be
purely a take-home exercise

37

Quizzes

Almost weekly, there will be a quiz on the topics from class
The intention is to make you engage with the material

Questions will be from lectures and readings

38

Academic Integrity

Here are examples for your consideration

you work on your laptop at a library with friends and step away from your
computer without locking it

you look at your neighbors’ screen/papers during an exam, but don’t copy
their answers

you take a piece of code from some website and give a link to the website at
the end of the homework

you work on a homework problem with friends, type the solution at home, but

it's exactly the same as that of your friend
39

Academic Integrity

Discussion is encouraged. But, you cannot share your code to your classmates or
post them online on ANY forum.

e The university, college, and department policies against academic dishonesty
will be strictly enforced. To understand your responsibilities as a student read: the
Student Code of Conduct.

e Plagiarism or any form of cheating in homework, assignments, labs, or exams is
subject to serious academic penalty.

e Any violation of the academic integrity policy will result in a 0 on the homework,
lab or assignment, and even an F on the final grade. And, the violation will be

reported to the Dean’s office. 40

How to be successful in CS 3650

Read the assigned reading before class
Attend the class

e Ask questions
e Answer questions

You will need the theoretical background from class to succeed in
labs/assignments/projects

41

How to be successful in CS 3650

Labs/Assignments/Projects

Plan ahead and start early
Ask questions early
Setting up the environment itself could take a long time

Coding always takes longer than your expect (No one is good at this!)
Debugging could take forever

42

Course Questions, Comments, Concerns?

46

So what exactly is C?

Here is what ‘C’ looks like

1 #include <stdio.h>

s int main () {

puts(” Hello Computer Systems!"”);

return O;

48

Here is what ‘C’ looks like

compile with:

gcc hello.c -o hello

1 #include <stdio.h>

s int main () {

puts(” Hello Computer Systems!"”);

return O;

49

Here is what ‘C’ looks like

compile with: gcc hello.c -o hello

de <stdio.h>

gcc is the compiler

hello.c is the name of
our text source code
file

("Hello Computer Systems!")

1

50

Here is what ‘C’ looks like

compile with: gcc hello.c -o hello

V

And we are using a flag -0’
(dash lower-case Oh)
which specifies the
argument that follows is [TEESIAITIUERE
going to output a binary
called hello.

51

Here is what ‘C’ looks like

compile with: gcc hello.c -o hello

#include brings in a library of
commands related to standard
input and output (so we can print

- text to the screen
; int main(){)

1 #include <stdio.h>

puts(” Hello Computer Sys

return O;

52

Here is what ‘C’ looks like

compile with: gcc hello.c -o hello

1 #include <stdio.h>

; int main(){

§ #puts prints something to the
puts(” Hello Comp screen. printf will be another

popular way to do this.
return O;

53

Here is what ‘C’ looks like

compile with: gcc hello.c -o hello

1 #include <stdio.h>

; int main(){

puts(” Hello Cg

return O;

And finally we are done with our
program and we return.

54

C and the compilation process

e In a picture, this is the compilation process from start to finish
e (Note in this class I'll often use clang too)

Pre-
processor

C
Source (cpp) Modified Assembly Relocatable Executable

program source program object object
(text) program (text) programs program
(text) (binary) (binary)

Compiler Assembler| hello.o Linker
(ccl) (1)

55

Little exercise to see what compiler is doing

e Generate assembly code

Pre-

© gcc -S hello.c ello-¢ | processor | Pel10-1
1 Source (cpp) Modified Assembly
0 InvEsRES Eesemial = e o

(text) (binary)

e Compile assembly to executable file
o gcc hello.s -o hello

e Generate Obiject file
o gcc -c hello.s

e View Object File
o nl hello.o (unreadable)

e |nvestigate Object File

o objdump -d hello.o (disassembly)
o objdump -t hello.o (symbol table)

Executable
object
program
(binary)

56

.file "hello.c"
text
.section .rodata

Quick view of the assembly

.string "Hello Computer Systems"

Text
_ .globl main
e How many folks have written .type main, @function
main:
assembly before? LFBO:
g .cfi_startproc
Close your eyes and Raise your i i
hands .cfi_def cfa_offset 16

.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $.LCO, %edi
call puts
movl $0, %eax
popg %rbp
.cfi_def cfa 7, 8
ret
.cfi_endproc
.LFEO:
.5ize main, .-main
.ident "GCC: (GNU) 8.5.0 20210514 (Red Hat 8.5.0-22)"
.section .note.GNU-stack,"",@progbits

Quick view of th

Our string

e How many folks have written
assembly before?

It's not too bad, you can pull out
various functions to orient
yourself

main:
.LFBO:

.LFEQ:

file "hello.c"
Jtext
.section .rodata

string "Hello Computer Systems”
text

.globl main

.type main, @function

.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.fi_def_cfa_register 6
movl $.LCO, %edi
call puts

movl $0, %eax

popg %rbp

.cfi_def cfa 7, 8

ret

.cfi_endproc

.5ize main, .-main
.ident "GCC: (GNU) 8.5.0 20210514 (Red Hat 8.5.0-22)"
.section .note.GNU-stack,"",@progbits

awjacks@login-students:~> objdump -t hello.o

Quick view of objdump

hello.o; file format elfb4-x86-64
e How many folks have used
SYMBOL TABLE:

objdump before?
. 0000000000000000 1 f *18S* 0000000000000000 hello.c

Close eyes and Raise hands [R R R A

again... 0000000000000000 | d .data 0000000000000000 . dotg
0000000000000000 1 ¢ .bss 0000000000000000 bss
0000000000000000 1 ¢ .rodeta 0000000000000 . rodoto
0000000000000000 1 ¢ .note.NU-stack 0000000000000000 note, NU-stack
0000000000000000 1 d .eh_frane 0000000000000000 . eh_frane
0000000000000000 | ¢ .coment 000000000000000 . coment
0000000000000000 g F .text 0000000000000015 main
0000000000000 UND* 0000000000000000 puts

59

Quick view of objdump

e How many folks have used
objdump before?

awjacks@login-students:~> objdump -t hello.o

hello.o: file format elf64-x86-64

SYMBOL TABLE:

0000000000000000 1 df *ABS* 0000000000000000 hello.c
0000000000000000 1 .text 0000000000000000 .text
0000000000000000 1 .data 0000000000000000 .data
0000000000000000 1 .bss 0000000000000000 .bss
0000000000000000 1 .rodata 0000000000000000 .rodata
0000000000000000 1 .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 1 .eh_frame 0000000000000000 .eh_frame
RO00000000000000 1 .comment 0000000000000000 .comment

F)()\Alearfljl t()()l t() F)ljll ()ljt some R0000000000000 g F .text 0000000000000015=men

ir]fc)rrT]Eati()r] 00000000000 *UND* 0000000000000¢ 20 puts

(Can see functions/libraries used)

60

So Compilers are pretty neat

e \When we start looking at some of the information taken in, we appreciate the
job they do.
o i.e. transform high level language to binary

e All of a sudden, writing some C code is not so bad!
o (And it of course is better than pure binary!)

61

So compilers are a core element of this class

e The other core pieces are the hardware(left) and operating system (right)

Register file
— %cz "
System bus Memory bus

B terf I/O Main
Ringerince bndge memory

/O bus Expansion slots for
other devices such
controller adapter controller

Mouse Keyboard Display

hello executable
stored on disk

63

Register file

System bus Memory bus

Main
memory

Expansion slots for
other devices such
as network adapters

Mouse Keyboard Display
hello executable

stored on disk

Let’s take a few minutes to
think about the hardware

64

Modern Hardware Visual Abstraction

e T[he “brain” of modern hardware is negistem.
=EEH|
the CPU ystem bus Memory bus

B terf I/O Main
us interface < bndge memory

o That’s where 1 instruction is executed at
a time

o Only 1!
o (Note: Modern computers have multiple 1O bus e
other devices such

Co reS) usB Graphics Disk as network adapters
controller adapter controller

e \WVe generally measure the speed at
. hello executable
which a CPU executes in oo
Megahertz or Gigahertz

o This is a metric for how ‘fast’' a CPU
performs, and how complex of software
can be run.

Mouse Keyboard Display

Modern Hardware Visual Abstraction

CPU

e Beyond the CPU, a number of devices Register fle
may also be connected. =

e Buses transfer information from
devices and memory into the CPU.

e There is a lot going on, and this needs % —HH=>

LU

System bus Memory bus

‘ ——N[0 — S| Main
Bus interface N— 1 bridge 1" | memory
LN

to be managed o e
e Note: Busses can be thought of as Voo Kestomd Diobiy
. hello executable
simple networks, with many things oo ok

hardcoded

So compilers are a core of this class

e The other core pieces are the hardware(left) and operating system (right)

Let's take a moment to .
think about operating [
systems

67

Many Different OSes

%
=
O

ie

=
<

BSD

69

Many Different OSes

Windows. - M= IRS] 5K q

Operating Systems are actively
developed! (read as = co-ops/jobs)

LinuX " You can actively contribute to the open
source ones now!

BSD

What is an Operating System?

Open question?

GOTO Slido.com #1993 797

When | boot up a machine, | see
Windows, Linux, or MacOS
booting up, but WHAT is it doing??

http://slido.com

What is an Operating System (OS)?

e An OS is any and all software that sits between
a user program and the hardware

e OS is aresource manager and allocator

o Decides between conflicting requests for
hardware access

o Attempts to be efficient and fair

e OSis a control program
o Controls execution of user programs
o Prevents errors and improper use

=

Operating System

—J s

Hardware

72

What is an Operating System?

e An OS is any and all software that sits between
a user program and the hardware

L =2 =
T |
L A A

aul Command Text
Line Shell Editor

Operating System

e

Hardware

73

What is an Operating System?

Shortly you will

oror be working in the
shell for your lab .
~_ and homework! s

Command Text
Line Shell Editor g

> between a user

Operating System

Tt ae

Hardware

74

Manager
Options View
Processes Performance App history Startup Users Details Services

5%
U

Bl Adobe Dreamweaver CC 2018 (... % 1405MB 0MB/s 0 Mbps
€ Google Chrome (41) 7% 31102MB 0.1MB/s 0 Mbps
[&] Microsoft Bash Launcher (2) 12M8 1B/s 0 Mbps

[Microsoft Word (32 bit) (2) ; 53.9 MB 0 Mbps

1] Notepad 9 0.8MB 0 Mbps
¥ Snipping Tool 22M8 /s OMbps

Task Manager 21.4M8B A 0 Mbps

3 AcroTra) % 0.5 MB 0Mbps

[Adobe Acrobat Update Service (... Z 0.5MB / 0Mbps

pplication Software

dobe CEF Helper (32 bit) 9 194 MB 0 MB/s 0 Mbps

@ Adobe Creative Cloud (32 bit) 103 MB 0MB/s 0 Mbps

Fewer details

OS is a resource manager and allocator
o Decides between conflicting requests for . M

hardware access s
o Attempts to be efficient and fair

Operating System

75

Two Common OS Families

e POSIX

o Anything Unix-ish

o e.g. Linux, BSDs, Mac, Android, iOS, QNX
e \Windows

o Stuff shipped by Microsoft

Many other operating systems may exist specific to a domain (e.g.
an operating system for a car, handheld gaming device, or smart
refrigerator)

Two Common OS Families

1 In this course, we will
e POSIX work in a POSIX

o Anything Unix-ish [Environment. Our

o __e.g. Linux, BSDs, Mac, Android, iOS Khoury machines are
e Windows Unix based.

o Stuff shipped by Microsoft

Many other operating systems may exist specific to a domain (e.g. an
operating system for a car or handheld gaming device)

Unix/Linux

[VERY] Brief History of Unix

@AT&T Bell Labs: Ken Thompson and Dennis Ritchie (among many others)
A response of sorts to complexity of Multics

C developed as a higher-level language to facilitate development
Contributed some truly elegant fundamental concepts

Set of orthogonal tools that can act as atomic processing steps

The pipeline and I/O redirections

Commands are just programs

Elegant (albeit simplistic) permission structure

...plus many more!

Hallmark:

79

WhO, What, Why, LinUX? https://www.linuxfoundation.org/

Linux is a family of free open source operating systems
o That means the code is freely available, and you can contribute to the project!
It was created by Linus Torvalds

o Variants of Linux are: Ubuntu, Debian, Fedora, Gentoo Linux, Arch Linux, CentOS,
etc.

o They all operate under roughly the same core code, which is called the kernel.

o Often they differ by the software, user interface, and configuration settings.

o So very often linux software for one flavor of linux will run on the other with few or no
changes.

Generally we (as systems programmers) like Linux, because it is a
clean and hackable operating system.

When many folks think of Unix-like operating systems, they may think
of a hacker using a ‘command-line interface’ to program.

86

https://www.linuxfoundation.org/
https://en.wikipedia.org/wiki/Linus_Torvalds

Over 30 years ago...

On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.

This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never

will support anything other than AT-harddisks, as that's all I have :-(.

87

https://groups.google.com/

Over 30 years ago...

On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:

v ¥V V ¥V ¥V ¥V ¥V V ¥V ¥V VvV VvV VvV V VvV VvV V V. VvV

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and

professional like gnu) for 386(486) AT clones. This has been brewing

since april, and is starting t

TR IRl Linux platforms: Alpha, ARC, ARM, ARM64, Apple M1 C6x,

(same physical layout of the f H8/300, Hexagon, ltanium, m68k, Microblaze, |\/||PS, NDS32,

among other things). Nios I, OpenRISC, PA-RISC, PowerPC, RISC-V, s390, SuperH,
SPARC, Unicore32, x86, x86-64, XBurst, Xtensa

I've currently ported bash(1.03
This implies that I'll get something prg vew months, and
I'd like to know what features most g pit. Any suggestions
are welcome, but I won't promise 4 pic them :-)

Linus (torv...@kriy Psinki.fi)
PS. Yes - it's free oy minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-(.

88

https://groups.google.com/
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/ARC_(processor)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM64
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/C6x
https://en.wikipedia.org/wiki/H8/300
https://en.wikipedia.org/wiki/H8/300
https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/M68k
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/S390
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/XBurst
https://en.wikipedia.org/wiki/Xtensa

The command line interface Starting M3-DOS...

e The command line interface is at Cin:_
the highest level just another
program.

e Linux and Mac have terminals
built-in, and Windows as well (cmd
and powershell).

e From it, we can type in the names
of programs to perform work for us

e (Next slide for examples)

Demonstrate simple ‘shell fu’

Is, tree, cd, ., ~

90

Why the command line?

e ‘|l love GUI interfaces, so simple and sleek looking”
e Well, | will argue the command line is a lot faster than moving your mouse
e Itis also very convenient for ‘scripting’ behavior that you could not so easily

do in a GUI environment.
o Executing a few commands in a row in a script is a piece of cake!

e And if you are working remotely, you often will not have any GUI environment

at all!
o (Often machines you need to access do not have a monitor attached)

96

Example shell script

B mikeshah@DESKTOP-DDNGQVA: /mnt/c/Windows/System32

myAge

Example shell script

e | wrote this script in a text editor called ‘vim’

e You will have to learn VIM (or emacs) in this course.
o It's a great skill to have.

B " mikeshah@DESKTOP-DDNGQVA: /mnt/c/Windows/System32

myAge

98

Example shell script Executing

e Note “Mike Shah” are the first and second arguments passed into this

program

B " mikeshah@DESKTOP-DDNGQVA: /mnt/c/Windows/System32

-bash-4.2% sh example.sh Mike Shah
Hello Mike Shah

What is your age?

500
That is great you are 500 years old!
-bash-4.2%

(Am | really 500 years old? Time flies when you are having fun!)

99

ssh - secure shell

e Our tool for remote access--which we will use for all of our work!
ssh Khoury_user_name@login.khoury.northeastern.edu

e After typing in my password successfully, | am now executing commands on a
machine somewhere on Northeastern’s campus

MacBook-Pro-2019:~ awjacks$ ssh awjacks@login.khoury.northeastern.edu
Last login: Tue Sep 6 15:08:51 2022 from 155.33.250.28

You have logged into login-students.khoury.northeastern.edu

Linux at Khoury College

You may SSH to the VDI linux machines for alternative resources.
VDI linux machines are available if connected to NUwave,

or if connected to NEU VPN.

The 40 hostnames are: vdi-linux-[030-070].khoury.northeastern.edu

This server DOES NOT send emails.
Please use the faculty login server to send emails.

For more information about Systems, please visit
https://www.khoury.northeastern.edu/systems/

ny issues, please contact us via email

" -bash-4.2$ hostname
. login-students.khoury.northeastern.edu
-bash-4.25$ ||

http://login.khoury.northeastern.edu

Feeling overwhelmed or forgetting a command?

Luckily there are built-in ‘manual pages’
Called the ‘man pages’ for short.

Simply type ‘man command_name’ for help
(Hit ‘q’ to quit the page when you are done)

(@)

B " mikeshah@DESKTOP-DDNGQVA: /m

-bash-4.2% man 1s

" mikeshah@DESKTOP-DDNGQVA: /mnt/c/Windows/System32

LS(1) User Commands LS(1)
NAME

ls - list directory contents
SYNOPSIS

1ls [OPTION]... [FILE]...
DESCRIPTION

List information about the
FILEs (the current directory
by default). Sort entries
alphabetically if none of
-cftuvSUX nor --sort is
specified.

Mandatory arguments to long
options are mandatory for
short options too.

gz

This lecture in summary

e \We are going to learn about computer systems
o This includes software (e.g. compilers) and hardware architecture
o Some basic operating system concepts.

e We are going to work in a Unix environment
o This work will be performed on a command-line

o We can access a command-line either:
m Through SSH or a Virtual Machine

121

One final thing...

Even with the best planning...

Some things may change this semester that are beyond our control
Everyone (including us) needs to be flexible

If you have an issue, it is better to tell us Eafl§ than at the last minute

e I'm looking forward to being your guide to Computer Systems

128

