
NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter
Desnoyers’ lecture slides for the same course.

First off, Logistics!

Classes will be recorded and released on Canvas
But you have to attend the class in-person

Have a notebook in front of you. Bring a laptop.

https://khoury-cs3650.github.io/
(Shared with other sections of CS 3650 offered by Prof. Ferdinand Vesely)

Feel free to interrupt me and ask questions.

https://khoury-cs3650.github.io/

Instructor and Teaching Assistants

Dr. Ziming Zhao
Associate Professor, Khoury College of Computer Sciences
Director, CyberspAce seCuriTy and forensIcs Lab (CactiLab)

Email: z.zhao@northeastern.edu
http://zzm7000.github.io
http://cactilab.github.io

Office hours will be T 2:00 pm - 3:30 pm or by appointment at 177
Huntington (Room 513) or the Zoom link

https://northeastern.zoom.us/j/98423457229

TAs: Tushin Mallick and Swadeep
Office hours: To be decided

http://cactilab.github.io
https://northeastern.zoom.us/j/98423457229

YouTube Channel

https://www.youtube.com/channel/UCkSeVUu-AxytXqalx66j7Eg/playlist

About CactiLab

Research areas:
● Systems and software security (Arm Cortex-M, Cortex-A, x86, RISC-V,

FPGA, GPU, etc.)
● System problems (optimization)
● System and security for/in ML/DL/LLM
● Formally verify the security properties of crypto protocols and system

code
● Hacking/CTF platforms

We need students at all levels for funded research, volunteer work,
independent study, undergraduate research experience, etc.

Recruiting for eCTF 2026

https://ectf.mitre.org/

How about you?

Take a moment and introduce yourself to
someone next to you. They are going to be
your colleagues for the next 14 weeks!

“e.g. What is your name? What is the worst
bug you have ever encountered?”

Will your classmate(s) and you be the
next:

● Jobs-Woz
● Gates-Allen
● Frances Allen
● Turing-Church
● Radhia and Patrick Cousot

Computer Systems

If algorithms and applications are
the “what” of computing, then
computer systems are the “how.”
They deal with the mechanisms
that let software run on hardware:
memory management, processes,
I/O, storage, scheduling,
concurrency, and communication.

Computer Systems

A “computer system” is not just hardware
or software — it’s the combination of
hardware, operating system, programming
languages, and applications that make a
computer usable.

If algorithms and applications are
the “what” of computing, then
computer systems are the “how.”
They deal with the mechanisms
that let software run on hardware:
memory management, processes,
I/O, storage, scheduling,
concurrency, and communication.

Computer Systems

The foundation that ties together hardware
and software so computers can actually
run programs.

A “computer system” is not just hardware
or software — it’s the combination of
hardware, operating system, programming
languages, and applications that make a
computer usable.

If algorithms and applications are
the “what” of computing, then
computer systems are the “how.”
They deal with the mechanisms
that let software run on hardware:
memory management, processes,
I/O, storage, scheduling,
concurrency, and communication.

Computer Systems

The foundation that ties together hardware
and software so computers can actually
run programs.

A “computer system” is not just hardware
or software — it’s the combination of
hardware, operating system, programming
languages, and applications that make a
computer usable.

If algorithms and applications are
the “what” of computing, then
computer systems are the “how.”
They deal with the mechanisms
that let software run on hardware:
memory management, processes,
I/O, storage, scheduling,
concurrency, and communication.

Computer Systems courses at Khoury College

● Two courses with the same name!
● A rough visualization of where the course is in the curriculum

CS 3650 Content

CS 5600 Content

Introduction to Systems More
Advanced Topics

Height
of box =
depth of
content

My goal is to get everyone through & not be intimidated!
You will then be ready to take on CS5600 & CY 5770

Software Vulnerabilty and Security

Roughly Speaking this course has a few ‘modules’

• Computer Systems Fundamentals
• Terminal, C, Assembly, and Compilers

• Virtualization
• Processes

• Computer Architecture
• Memory/Cache/etc

• Concurrency
• Threads/Locks/Semaphores
• Parallelism

• Persistence
• File Systems
• Storage Devices

• Other Selected Topics
• Debugging/Instrumentation/Final

Note Operating Systems is
the biggest chunk. Most
things we do in the course
you should view through the
lens of an operating system.

We do not have an undergraduate
course entitled “Operating
Systems”. Only a graduate level CS
6640 – Operating Systems
Implementation.

Schedule

I will be out
of town. Will
be an online
class and
Exam 1

Why using operating system as the lens to learn systems?

● OS as Middleware
○ It abstracts low-level details and provides high-level interfaces
○ Middleware is crucial because it allows programmers to build powerful

software without reinventing low-level mechanisms.

● Bridging Hardware and Applications
○ The OS connects the physical machine to user programs, transforming raw

hardware into usable resources.
○ It manages CPUs, memory, storage, and networks, ensuring that

applications can run safely and efficiently.

● Integration of Knowledge. Studying OS ties together all layers of computer
science
○ Hardware/architecture: instruction sets, memory hierarchies, I/O devices.
○ Systems programming: C, assembly, and low-level debugging.
○ Algorithms & data structures: scheduling, synchronization, paging, file

systems.

Computer Systems = Magic?

• I hate to break it to you, but there is no magic in computers.

• Computers are just 1’s and 0’s.

• In this course, we are going to look at 1’s and 0’s, and how to combine
them to create different abstractions.

• That is where the magic comes in however–through the creativity and
the art of computer science.

• Computer Science is an art!

“No more magic”

• We do not have to look at machines
any more and think there is magic
going on.

• Instead, we want to understand the
inner working

• Someone programmed our operating
systems, devices, and software

• And they started off where you
are!

The Power of Abstraction

● Abstraction enables us to
manage complexity by
hiding details and exposing
only essential features.

● It supports reasoning at the
right level without being
overwhelmed by low-level
implementation.

https://www.youtube.com/watch
?v=qAKrMdUycb8

The Power of Abstraction

"Any problem in computer science can be solved by
another level of indirection,"

– David Wheeler and Butler Lampson

This is a guiding principle stating that introducing a layer
of abstraction or indirection can simplify complex
problems by breaking them down or decoupling
components

https://www.google.com/search?cs=0&sca_esv=7550878c098e0420&sxsrf=AE3TifPvmSD_YF1XZYq3gR6fp0W560hSBA%3A1757000423326&q=David+Wheeler&sa=X&ved=2ahUKEwiBocHQuL-PAxVwK1kFHXzYBxUQxccNegQIAhAB&mstk=AUtExfCAH7XiB4Gk6j2vKlSa5MyKcWgmIjyAZGQX36iiy3mm92g1zxlZ-vbTga15BgU2j1sHb-z67Nh2mWuZGdBlNLb405ZlNChuMrw4-Rf6K7QGaa-X4rfBIwKI-MQAUqZADz11afxNtYrKU6IpYUr_4NjWG1pZ5FrwqO-HxFvkQlJxliU&csui=3
https://www.google.com/search?cs=0&sca_esv=7550878c098e0420&sxsrf=AE3TifPvmSD_YF1XZYq3gR6fp0W560hSBA%3A1757000423326&q=Butler+Lampson&sa=X&ved=2ahUKEwiBocHQuL-PAxVwK1kFHXzYBxUQxccNegQIAhAC&mstk=AUtExfCAH7XiB4Gk6j2vKlSa5MyKcWgmIjyAZGQX36iiy3mm92g1zxlZ-vbTga15BgU2j1sHb-z67Nh2mWuZGdBlNLb405ZlNChuMrw4-Rf6K7QGaa-X4rfBIwKI-MQAUqZADz11afxNtYrKU6IpYUr_4NjWG1pZ5FrwqO-HxFvkQlJxliU&csui=3

Course Goals

By the end of this course, you will:

● Have a working knowledge of C
● Be comfortable working at the terminal prompt in a Unix

environment
● Build and use tools for inspecting and debugging programs at a low

level
● Be comfortable with concepts like concurrency and parallelism
● Have a better understanding of the basics and internals of operating

systems
● Gain some experience working on a large scale codebase
● Position yourself for jobs as a systems programmer

Books

● Main
○ Dive Into Systems
○ Operating Systems: Three Easy Pieces

(aka OSTEP)
● Additional

○ MIT PDOS xv6 x86 32bit source code
○ xv6 book x86 edition

● Recommended
○ Low-Level Programming: C, Assembly,

and Program Execution on Intel® 64
Architecture

○ C Programming Language Book
○ Computer Systems: A Programmer's

Perspective, 3 Edition

https://diveintosystems.org/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://github.com/mit-pdos/xv6-public
https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf
https://www.amazon.com/Computer-Systems-Programmers-Perspective-3/dp/9332573905/ref=mt_paperback?_encoding=UTF8&me=
https://www.amazon.com/Computer-Systems-Programmers-Perspective-3/dp/9332573905/ref=mt_paperback?_encoding=UTF8&me=

Course Resources and Website

https://khoury-cs3650.github.io/

Shared with other sections of CS 3650 offered by Prof. Ferdinand Vesely

All class materials can be found on the website

Learning systems we will use: Canvas, Piazza, gradescope, GitHub

https://khoury-cs3650.github.io/

Course Resources and Website

https://khoury-cs3650.github.io/

https://khoury-cs3650.github.io/

Teaching Style

• Everyone learns differently--optimize as needed along the way
• There will be lectures (for auditory learners) - Code reading and

demos
• Many visuals on slides (for visual learners)
• Labs and assignments (for kinesthetic learners)

• This is a very hands-on class, we will build things

• There will be plenty of opportunity to make mistakes
Do not be afraid to be wrong

• The worst-case scenario is we review

• Do ask questions!
• I try to avoid randomly calling on students--but do participate!

• Come to office hours! Mine or the TAs or both!

How to ask questions

• Ask specific questions
• My code doesn’t work/compile (bad)
• I tried to do A and A doesn’t work in the following ways B (error

msg), C (debug info), D (certain behavior), etc. (good)
• To solve this issue with A, I tried E, F, G but did not work (good)

• But do not reveal solutions

Expectations

• You have taken some ‘programming’ related class.
• In the instance that you have not--you can still perform well.

• i.e. Make sure you do the readings

• You know at least one programming language well

• In this course we will use C and get exposed to x86 32bit and 64bit
assembly

• C is (still) the industry standard
• (You can pick up whatever other fancy systems language later once

you learn one) Yes I know there is GO, Erlang,
Rust, etc.

Evaluation

This is a course about reading, designing and writing code.
Therefore, most of your evaluation will be on the quality of the
code you produce and its correctness.

The grading distribution used for this course is below.

● 10% exercises & quizzes (approx. 10)
● 60% homework assignments

○ 40% assignments (approx. 8)
○ 20% projects (2)

● 30% exams (2)

Grades

Assignments and Projects

There will be approximately 8 programming assignments and two
project assignments throughout the semester.

The first 4 assignments are to be completed individually (“solo
assignments”).

The remaining assignments and projects can be optionally
completed in groups. You will be responsible for selecting a
partner to complete the assignments.

Projects

There will be two “projects”

These are longer (2 weeks), more substantial programming
exercises that will require you to plan and/or experiment more

As such, the description will be more vague than with
assignments – you are expected to do more reading, thinking,
and asking

Labs

We provide “labs” as a means to practice implementation techniques
and tools

The idea is to provide exercises related to the week’s topic, which will
prepare you better for tackling that or next week’s assignment/project

These will be graded mostly on effort – the intention is to encourage you
to do the exercises as preparation for assignments

Ideally, we would like to provide you some class time (30-60 mintes)
every week to work on the labs, but if we need more time to cover
topics, the “lab” will be purely a take-home exercise

Quizzes

Almost weekly, there will be a quiz on the topics from class

The intention is to make you engage with the material

Questions will be from lectures and readings

Course Materials/Equipment

● A laptop
● The laptop’s operating system shouldn’t matter, however, having a Unix-like

environment (Linux, macOS, WSL, *BSD, …) is an advantage
● We will provide you with a cloud-based Virtual Machine for you to work on
● We will use Linux for most of the course
● With any programming assignment, the assumption is, that you have tested

your code on the provided VM. Regrade requests based on “it worked on
my machine” will be rejected

Requests for Regrading

After grades have been posted, there is a 3 day window to
request a regrade from the TA. If you have further issues with
TA’s regrade, you may challenge the regrade with a professor.

Academic Integrity

Your first assignment is to to read the NEU academic integrity policies

Here are examples for your consideration
● you work on your laptop at a library with friends and step away from your

computer without locking it
● you look at your neighbors’ screen/papers during an exam, but don’t copy

their answers
● you take a piece of code from some website and give a link to the website at

the end of the homework
● you work on a homework problem with friends, type the solution at home,

but it’s exactly the same as that of your friends

Academic Integrity

● Discussion is encourage. But, you cannot share your code, exploits to your
classmates or post them online.

● The university, college, and department policies against academic
dishonesty will be strictly enforced. To understand your responsibilities as a
student read: NEU Student Code of Conduct.

● Plagiarism or any form of cheating in homework, assignments, labs, or
exams is subject to serious academic penalty.

● Any violation of the academic integrity policy will result in a 0 on the
homework, lab or assignment, and even an F or >F< on the final grade. And,
the violation will be reported to the Dean’s office.

https://osccr.sites.northeastern.edu/code-of-student-conduct/

Disability Access Services

If you need DAS, please inform me in the first two weeks.

How to be successful in CS 3650

• Read the assigned reading before class

• Attend the class
• Ask questions
• Answer questions

• You need theoretical backgrounds from class to succeed in
labs/assignments/projects

How to be successful in CS 3650

• Labs/Assignments/Projects
• Plan ahead and start early
• DO NOT START AT THE LAST MOMENT
• Ask questions early

• Setting up the environment itself could take a long time
• Coding always takes longer than your expectation
• Debugging could take forever

Questions?

Here is what ‘C’ looks like

#include <stdio.h>

int main(){

puts("Hello Computer Systems!\n");

return 0;
}

Here is what ‘C’ looks like

• compile with:
• gcc hello.c -o hello
• clang hello.c -o hello

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

‘clang’ is the
compiler

hello.c is the
name of our
text source
code file

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

And we are using a flag ‘-o’
(dash lower-case Oh)
which specifies the
argument that follows is
going to output a binary
called hello.

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello
#include brings in a library of
commands related to standard
input and output (so we can print
text to the screen)

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

#puts prints something to the
screen. printf will be another
popular way to do this.

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

And finally we are done with our
program and we return.

C and the compilation process

• In a picture, this is the compilation process from start to finish

• (Note in this class we’ll use clang, but gcc is also fine)

clang -Wall -save-temps hello.c -o hello

Little exercise to see what compiler is doing

• Generate assembly code
• clang -S hello.c

• Investigate assembly

• Compile assembly to executable file
• clang hello.s -o hello

• Generate Object file
• clang -c hello.s

• View Object File
• nl hello.o (unreadable)

• Investigate Object File
• objdump -d hello.o

(disassembly – shows assembly of machine instructions)
• objdump -t hello.o (shows symbol table)

Quick view of the assembly

clang -S hello.c

cat hello.s

Quick view of objdump

objdump -d ./hello

Quick view of objdump

objdump -t ./hello

So compilers are pretty neat

• When we start looking at some of the information taken in, we
appreciate the job they do.

• i.e. transform high level language to binary

• All of a sudden, writing some C code is not so bad!
• (And it of course is better than pure binary!)

C and compilers allow us to control the system

• Core pieces of systems include
hardware(left) and operating system (right)

C and compilers allow us to control the system

• Core pieces of systems include
hardware(left) and operating system (right)

Let’s take a few minutes to
think about the hardware

Modern Hardware Visual Abstraction

• CPU is the “brain” of modern
hardware

• That’s where 1 instruction is
executed at a time

• Only 1!
• (Note: Modern computers have

multiple cores/hardware threads)

• We generally measure the speed at
which a CPU executes in Megahertz
or Gigahertz

• This is a metric for how ‘fast’ a
CPU performs, and how complex
of software can be run.

Modern Hardware Visual Abstraction

• Beyond the CPU, a number of
devices may also be connected.

• Buses transfer information from
devices and memory into the
CPU.

• There is a lot going on, and this
needs to be managed

• Note: Busses can be thought of
as simple networks, with many
things hardcoded.

• CPU Socket
• Many different physical socket standards

• This a Pentium 1 socket
• Physical standard is less important than Instruction Set Architecture

(ISA)
• IBM PCs are Intel 80386 compatible
• Original x86 design
• Intel, AMD, VIA

• Today’s dominant ISA: x86-64, developed by AMD

• Slots for random access memory
(RAM)

• Pre-1993: DRAM (Dynamic RAM)
• Post-1993: SDRAM (Synchronous

DRAM)
• Current standard: Double data rate

SDRAM (DDR SDRAM)
• North Bridge
• Coordinates access to

main memory

The northbridge was a
dedicated chip that
connected the CPU to
fast components like
RAM and GPU. It no
longer exists as a
separate chip because its
functions are now inside
modern CPUs.

• Built in I/O also on the PCI/ISA bus• I/O device slots
• Attached to the south-bridge bus
• Very old standard: ISA slots

• Slightly less old standard: PCI
slots

• Other types:
• AGP slots
• PCI-X slots

• South-bridge
• Facilitates I/O between

devices, the CPU, and
main memory

The south bridge is
the other half of the
traditional computer
chipset, handling
slower-speed I/O
(input/output)
operations and
peripheral
connections.

• Storage connectors
• Also controlled by the South Bridge

• Old standard: Parallel ATA (P-ATA)
• AT Attachment Packet Interface (ATAPI)
• Evolution of the Integrated Drive

Electronics (IDE) standard
• Other standards

• Small Computer System Interface (SCSI)
• Serial ATA (SATA)

PCI-x16 slotsPCI slot

SATA
Plugs

South
Bridge

North
Bridge

USB
Headers

RAM Slots

CPU socket

PATA
Connectors

C and compilers allow us to control the system

• Core pieces of systems include
hardware(left) and operating system (right)

Let’s take a moment to think
about operating systems

What is an Operating System?

Many Different OSes

Windows

Linux

BSD

Many Different OSes

Windows

Linux

BSD

Operating Systems are actively
developed!

You can actively contribute to the open
source ones now!

What is an Operating System?

• OS is software that sits between user programs and
hardware

• OS provides interfaces to computer hardware

– User programs do not have to worry about details

Hardware
(e.g., CPU,

mouse,
keyboard)

User
Program

Operating
System

Hardware (e.g., mouse, keyboard)

Text
Editor

Operating System

Command
Line Shell

GUI

Shortly you will
be working in
the shell for
your lab and
homework!

• OS is a resource manager and control program
• Controls execution of user programs
• Decides between conflicting requests for hardware access
• Attempts to be efficient and fair
• Prevents errors and improper use

htop

Two Common OS Families

• POSIX
• Anything Unix-ish
• e.g. Linux, BSDs, Mac, Android, iOS, QNX

• Windows
• Stuff shipped by Microsoft

• Many other operating systems may exist specific to a domain (e.g. an
operating system for a car, handheld gaming device, or smart
refrigerator)

In this course, we will
work in a POSIX
Environment.

Who, what, why, Linux?

• Linux is a family of free open source operating systems
• That means the code is freely available, and you can contribute to the project!

• It was created by Linus Torvalds
• Variants of Linux are: Ubuntu, Debian, Fedora, Gentoo Linux, Arch Linux,

CentOS, etc.
• They all operate under roughly the same core code, which is called the kernel.
• Often they differ by the software, user interface, and configuration settings.
• So very often linux software for one flavor of linux will run on the other with

few or no changes.

• Generally we (as systems programmers) like Linux, because it is a clean and
hackable operating system.

• When many folks think of Unix-like operating systems, they may think of a hacker
using a ‘command-line interface’ to program.

https://en.wikipedia.org/wiki/Linus_Torvalds

Over 30 years ago...
On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:
> Hello everybody out there using minix -
>
> I'm doing a (free) operating system (just a hobby, won't be big and
> professional like gnu) for 386(486) AT clones. This has been brewing
> since april, and is starting to get ready. I'd like any feedback on
> things people like/dislike in minix, as my OS resembles it somewhat
> (same physical layout of the file-system (due to practical reasons)
> among other things).
>
> I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
> This implies that I'll get something practical within a few months, and
> I'd like to know what features most people would want. Any suggestions
> are welcome, but I won't promise I'll implement them :-)
>
> Linus (torv...@kruuna.helsinki.fi)
>
> PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
> It is NOT protable (uses 386 task switching etc), and it probably never
> will support anything other than AT-harddisks, as that's all I have :-(.

https://groups.google.com/

Over 30 years ago...
On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:
> Hello everybody out there using minix -
>
> I'm doing a (free) operating system (just a hobby, won't be big and
> professional like gnu) for 386(486) AT clones. This has been brewing
> since april, and is starting to get ready. I'd like any feedback on
> things people like/dislike in minix, as my OS resembles it somewhat
> (same physical layout of the file-system (due to practical reasons)
> among other things).
>
> I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
> This implies that I'll get something practical within a few months, and
> I'd like to know what features most people would want. Any suggestions
> are welcome, but I won't promise I'll implement them :-)
>
> Linus (torv...@kruuna.helsinki.fi)
>
> PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
> It is NOT protable (uses 386 task switching etc), and it probably never
> will support anything other than AT-harddisks, as that's all I have :-(.

Linux platforms: Alpha, ARC, ARM, ARM64, Apple
M1 C6x, H8/300, Hexagon, Itanium, m68k,
Microblaze, MIPS, NDS32, Nios II, OpenRISC,
PA-RISC, PowerPC, RISC-V, s390, SuperH, SPARC,
Unicore32, x86, x86-64, XBurst, Xtensa

https://groups.google.com/
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/ARC_(processor)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM64
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/C6x
https://en.wikipedia.org/wiki/H8/300
https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/M68k
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/S390
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/XBurst
https://en.wikipedia.org/wiki/Xtensa

The command line interface

• The command line interface is at
the highest level just another
program.

• Linux and Mac have terminals
built-in, and Windows as well (cmd
and powershell).

• From it, we can type in the names
of programs to perform work for us

Shell demo

• ls

• cd (cd ~, /, ..) : shell built-in command

• pwd : shell built-in command

• tree

• tab

• up/down arrow

• History

• htop

Why the command line?

• You might argue “I love GUI interfaces, so simple and sleek looking”

• The command line is a lot faster than moving your mouse

• It is also very convenient for ‘scripting’ behavior that you could not so
easily do in a GUI environment.

• Executing a few commands in a row in a script is a piece of cake!

• And if you are working remotely, you often will not have any GUI
environment at all!

• (Often machines you need to access do not have a monitor
attached)

Example shell script

Example shell script Executing

Feeling overwhelmed or forgetting a command?

• Luckily there are built-in ‘manual pages’

• Called the ‘man pages’ for short.

• Simply type ‘man command_name’ for help
• (Hit ‘q’ to quit the page when you are done)

Linux man pages are organized into numbered sections

Section 1: User Commands
● Executable programs and shell commands that

regular users can run. Examples: ls, cp, grep, gcc
Section 2: System Calls

● Functions provided directly by the Linux kernel.
Examples: open(), read(), write(), fork()

Section 3: Library Functions
● Functions provided by programming libraries

(especially C library). Examples: printf(), malloc(),
strlen()

Section 4: Special Files
● Device files and special files (usually in /dev).

Examples: /dev/null, /dev/random
Section 5: File Formats

● Configuration file formats and conventions.
Examples: passwd (for /etc/passwd), fstab, hosts

Section 6: Games
● Games and entertainment programs

Section 7: Miscellaneous
● Conventions, macro packages, and

miscellaneous topics
● Examples: ascii, regex, signal

Section 8: System Administration
● Commands typically used by system

administrators
● Examples: mount, iptables, crontab

Section 9: Kernel Routines
● Linux kernel API documentation (less commonly

used)
Usage Examples:

● man ls - shows section 1 (user command)
● man 2 open - specifically shows section 2

(system call)
● man 3 printf - shows section 3 (library function)
● man 4 tty

You can see which sections contain a particular topic
using man -k keyword or apropos keyword.

Xv6: A teaching operating system!

• https://github.com/mit-pdos/xv6-public

xv6

• We will be using xv6 to build and implement some Operating Systems
features

• This will give you experience adding features to a large piece of
software.

