NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter
Desnoyers’ lecture slides for the same course.

First off, Logistics!

Classes will be recorded and released on Canvas
But you have to attend the class in-person

Have a notebook in front of you. Bring a laptop.

https://khoury-cs3650.github.io/
(Shared with other sections of CS 3650 offered by Prof. Ferdinand Vesely)

Feel free to interrupt me and ask questions.

https://khoury-cs3650.github.io/

Instructor and Teaching Assistants

Dr. Ziming Zhao
Associate Professor, Khoury College of Computer Sciences
Director, CyberspAce seCuriTy and forenslcs Lab (CactiLab)

Email: z.zhao@northeastern.edu
http://zzm7000.github.io
http://cactilab.github.io

Office hours will be T 2:00 pm - 3:30 pm or by appointment at 177
Huntington (Room 513) or the Zoom link
https://northeastern.zoom.us/j/98423457229

TAs: Tushin Mallick and Swadeep
Office hours: To be decided

http://cactilab.github.io
https://northeastern.zoom.us/j/98423457229

YouTube Channel

CyberspACe securiTy and forensics lab (CactiLab)

Customize channel Manage videos
@zimingzhao6619 296 subscribers 143 videos
CactiLab is in the Department of Computer Science and Engineering at Uni.. >
HOME VIDEOS PLAYLISTS COMMUNITY CHANNELS ABOUT Q
Created playlists = Sortby

Instructor and Tesching Assistant

oftee: 338 b -«

N = L

2023 Spring Team Cacti 2023 Spring UB CSE 410/565 2022 Fall UB CSE 410/510 2022 Spring UB CSE 410/510 2021 Fall UB CSE 410/510 2020 UB CSE 610 System
Training Computer Security Software Security Software Security Software Security Security - Attack and Defen...
View full playlist View full playlist View full playlist View full playlist View full playlist View full playlist

lext

No required teat book.
Slides ané reading maters
Blscbosrd

Suggestod resding maters
- Mt S P Corm

36 videos

7 videos 10 videos

2018 ASU CSE 469 Computer ASU CSE 469 Computer and ASU CSE 468 Computer
and Network Forensics Network Forensics S17 Network Security F16

View full playlist View full playlist View full playlist

https://www.youtube.com/channel/UCkSeVUu-AxytXqgalx66j7Eg/playlist

About CactiLab

Research areas:

Systems and software security (Arm Cortex-M, Cortex-A, x86, RISC-V,
FPGA, GPU, etc.)

System problems (optimization)

System and security for/in ML/DL/LLM

Formally verify the security properties of crypto protocols and system
code

Hacking/CTF platforms

We need students at all levels for funded research, volunteer work,
independent study, undergraduate research experience, etc.

Recruiting for eCTF 2026

2026 ECTF VIEW THE RULES HERE

In the 2026 eCTF, teams will design and implement a secure storage solution
for a chip foundry. The system must allow users with various roles to access
the proper data without leaking sensitive chip designs to unauthorized

parties.

Key dates:

January 14: eCTF kickoff!

January 31: Last day for late team registration
February 25: Handoff

April 15: Scoreboard closes

April 21: Poster session

April 24: eCTF Award Ceremony

For more information, reach us at ectf@mitre.org.

REGISTER NOW

DOWNLOAD COMPETITION FLYER DOWNLOAD ADVISOR INFO SHEET

https://ectf.mitre.org/

How about you?

Take a moment and introduce yourself to
someone next to you. They are going to be
your colleagues for the next 14 weeks!

“e.g. What is your name? What is the worst
bug you have ever encountered?”

Will your classmate(s) and you be the
next:

Jobs-Woz

Gates-Allen

Frances Allen
Turing-Church

Radhia and Patrick Cousot

Computer Systems

+ If algorithms and applications are
. the “what” of computing, then
computer systems are the “how.”

. They deal with the mechanisms
that let software run on hardware:
memory management, processes,
. 1/0, storage, scheduling,
concurrency, and communication.

+ A “computer system” is not just hardware

. or software — it's the combination of

" hardware, operating system, programming
languages, and applications that make a

i computer usable.

If algorithms and applications are
the “what” of computing, then
computer systems are the “how.”
They deal with the mechanisms
that let software run on hardware:
memory management, processes,
I/0, storage, scheduling,
concurrency, and communication.

. A “computer system” is not just hardware
, ' or software — it's the combination of
The foundation that ties together hardware hardware, operating system, programming
and software so computers can actually ; . languages, and applications that make a

computer usable.

run programs.

If algorithms and applications are
the “what” of computing, then
computer systems are the “how.”
They deal with the mechanisms
that let software run on hardware:
memory management, processes,
I/0, storage, scheduling,
concurrency, and communication.

. A “computer system” is not just hardware
, ' or software — it's the combination of
The foundation that ties together hardware hardware, operating system, programming
and software so computers can actually ; . languages, and applications that make a

computer usable.

run programs.

If algorithms and applications are
the “what” of computing, then
computer systems are the “how.”
They deal with the mechanisms
that let software run on hardware:
memory management, processes,
I/0, storage, scheduling,
concurrency, and communication.

Computer Systems courses at Khoury College

e Two courses with the same name!
e A rough visualization of where the course is in the curriculum

Height

of box = | | CS 5600 Content
depth of

content CS 3650 Content

Introduction to Systems More
Advanced Topics

Roughly Speaking this course has a few ‘modules’

Computer Systems Fundamentals
« Terminal, C, Assembly, and Compilers

Virtualization
* Processes

Computer Architecture
* Memory/Cache/etc

Concurrency
» Threads/Locks/Semaphores
* Parallelism

Persistence
* File Systems
« Storage Devices

Other Selected Topics
* Debugging/Instrumentation/Final

Note Operating Systems is
the biggest chunk. Most
things we do in the course
you should view through the
lens of an operating system.

. We do not have an undergraduate
- course entitled “Operating

. Systems”. Only a graduate level CS
. 6640 - Operating Systems

. Implementation.

Schedule

Week (Monday) Topics Assignments & Labs

1(Sep 1) Intro to Computer Systems Assignment 1 out

2 (Sep 8) Assembly A1l due
Assignment 2 out

3 (Sep 15) Memory, the Stack, Recursion A2 due
Assignment 3 out

4 (Sep 22) Introto C A3 due
Assignment 4 out

5 (Sep 29) Processes A4 due
Project 1 out

6 (Oct 6) File I/0

7 (Oct 13) Virtual Memory Exam 1(10/16)
Project 1 due
Assignment 5 out

8 (Oct 20) Concurrency AS due
Assignment 6 out

9 (Oct 27) Concurrency A6 due
Assignment 7 out

10 (Nov 3) OS Kernels, Booting, xv6 A7 due
Assignment 8 out

11 (Nov 10) OS Kernels, Booting, xv6 A8 due

12 (Nov 17) File Systems Exam 2 (11/20)
Project 2 out

13 (Nov 24) File Systems

13 (Dec 1) Wrap-up Project 2 due

I will be out
of town. Will
be an online
class and
Exam 1

Why using operating system as the lens to learn systems?

e OS as Middleware
o It abstracts low-level details and provides high-level interfaces
o Middleware is crucial because it allows programmers to build powerful
software without reinventing low-level mechanisms.

e Bridging Hardware and Applications
o The OS connects the physical machine to user programs, transforming raw
hardware into usable resources.
o It manages CPUs, memory, storage, and networks, ensuring that
applications can run safely and efficiently.

e Integration of Knowledge. Studying OS ties together all layers of computer
science
o Hardware/architecture: instruction sets, memory hierarchies, I/0 devices.
o Systems programming: C, assembly, and low-level debugging.
o Algorithms & data structures: scheduling, synchronization, paging, file
systems.

Computer Systems = Magic?

* I hate to break it to you, but there is no magic in computers.
« Computers are just 1's and 0's.

* In this course, we are going to look at 1’s and 0’s, and how to combine
them to create different abstractions.

 That is where the magic comes in however-through the creativity and
the art of computer science.

« Computer Science is an art!

“No more magic”

* We do not have to look at machines
any more and think there is magic
going on.

 Instead, we want to understand the
inner working

« Someone programmed our operating
systems, devices, and software

« And they started off where you
are!

The Power of Abstraction

e Abstraction enables us to
manage complexity by
hiding details and exposing
only essential features.

e It supports reasoning at the
right level without being
overwhelmed by low-level
implementation.

https://www.youtube.com/watch
2v=qAKrMdUych8

Barbara Liskov, 2008 ACM A.M. Turing Award Lecture "The Power of Abstraction”
@ isioiltzino: rfsor Computing Machinery (A.. @ w s o 2 share 4 Ask U Dowaiond

The Power of Abstraction

"Any problem in computer science can be solved by
another level of indirection,"

- David Wheeler and Butler Lampson

This is a guiding principle stating that introducing a layer
of abstraction or indirection can simplify complex

problems by breaking them down or decoupling
components

https://www.google.com/search?cs=0&sca_esv=7550878c098e0420&sxsrf=AE3TifPvmSD_YF1XZYq3gR6fp0W560hSBA%3A1757000423326&q=David+Wheeler&sa=X&ved=2ahUKEwiBocHQuL-PAxVwK1kFHXzYBxUQxccNegQIAhAB&mstk=AUtExfCAH7XiB4Gk6j2vKlSa5MyKcWgmIjyAZGQX36iiy3mm92g1zxlZ-vbTga15BgU2j1sHb-z67Nh2mWuZGdBlNLb405ZlNChuMrw4-Rf6K7QGaa-X4rfBIwKI-MQAUqZADz11afxNtYrKU6IpYUr_4NjWG1pZ5FrwqO-HxFvkQlJxliU&csui=3
https://www.google.com/search?cs=0&sca_esv=7550878c098e0420&sxsrf=AE3TifPvmSD_YF1XZYq3gR6fp0W560hSBA%3A1757000423326&q=Butler+Lampson&sa=X&ved=2ahUKEwiBocHQuL-PAxVwK1kFHXzYBxUQxccNegQIAhAC&mstk=AUtExfCAH7XiB4Gk6j2vKlSa5MyKcWgmIjyAZGQX36iiy3mm92g1zxlZ-vbTga15BgU2j1sHb-z67Nh2mWuZGdBlNLb405ZlNChuMrw4-Rf6K7QGaa-X4rfBIwKI-MQAUqZADz11afxNtYrKU6IpYUr_4NjWG1pZ5FrwqO-HxFvkQlJxliU&csui=3

Course Goals

By the end of this course, you will:

e Have a working knowledge of C

e Be comfortable working at the terminal prompt in a Unix
environment

e Build and use tools for inspecting and debugging programs at a low
level

e Be comfortable with concepts like concurrency and parallelism

e Have a better understanding of the basics and internals of operating
systems

e Gain some experience working on a large scale codebase

e Position yourself for jobs as a systems programmer

Books

Main
o Dive Into Systems
o QOperating Systems: Three Easy Pieces
(aka OSTEP)
Additional
o MIT PDOS xv6 x86 32bit source code
o Xxv6 book x86 edition
Recommended
o Low-Level Programming: C, Assembly,
and Program Execution on Intel® 64
Architecture
o CProgramming Language Book
o Computer Systems: A Programmer's

Perspective, 3 Edition

Operating
Systems

BRYANT ¢ O'HALLARON

SECOND EDITION

THE

C:

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

Low-Level

Programming

https://diveintosystems.org/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://github.com/mit-pdos/xv6-public
https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf
https://www.amazon.com/Computer-Systems-Programmers-Perspective-3/dp/9332573905/ref=mt_paperback?_encoding=UTF8&me=
https://www.amazon.com/Computer-Systems-Programmers-Perspective-3/dp/9332573905/ref=mt_paperback?_encoding=UTF8&me=

Course Resources and Website

https://khoury-cs3650.github.io/

Shared with other sections of CS 3650 offered by Prof. Ferdinand Vesely

All class materials can be found on the website

Learning systems we will use: Canvas, Piazza, gradescope, GitHub

https://khoury-cs3650.github.io/

Course Resources and Website
https://khoury-cs3650.github.io/

(S3650 Computer Systems

General Instructor
Information

e |nstructor
e Location and Time
e Teaching Assistants

¢ ;

Ferdinand Vesely Ziming Zhao
f.vesely@northeastern z.zhao@northeastern

Location and Time

Section Instructor Times Location
1 F. Vesely Mon/Wed/Thu 1:35-2:40pm Churchill Hall 103
2 Z.Zhao Tue 11:45am-1:25pm, Thu 2:50-4:30pm Shillman Hall 420

3 F. Vesely Mon/Wed/Thu 4:35-5:40pm Churchill Hall 103

https://khoury-cs3650.github.io/

Teaching Style

 Everyone learns differently--optimize as needed along the way

* There will be lectures (for auditory learners) - Code reading and
demos

« Many visuals on slides (for visual learners)
* Labs and assignments (for kinesthetic learners)

* This is a very hands-on class, we will build things

» There will be plenty of opportunity to make mistakes
Do not be afraid to be wrong

» The worst-case scenario is we review

* Do ask questions!
» 1try to avoid randomly calling on students--but do participate!

* Come to office hours! Mine or the TAs or both!

How to ask questions

* Ask specific questions
« My code doesn't work/compile (bad)

[tried to do A and A doesn’'t work in the following ways B (error
msg), C (debug info), D (certain behavior), etc. (good)

* To solve this issue with A, I tried E, F, G but did not work (good)
* But do not reveal solutions

Expectations

* You have taken some ‘programming’ related class.
* In the instance that you have not--you can still perform well.
* i.e. Make sure you do the readings

* You know at least one programming language well

* In this course we will use C and get exposed to x86 32bit and 64bit
assembly

e Cis (still) the industry standard

* (You can pick up whatever othermlanguage later once
you learn one)

Evaluation

This is a course about reading, designing and writing code.
Therefore, most of your evaluation will be on the quality of the
code you produce and its correctness.

The grading distribution used for this course is below.

e 10% exercises & quizzes (approx. 10)
e 60% homework assignments

o 40% assignments (approx. 8)

o 20% projects (2)
o 30% exams (2)

Grades

To calculate final grades, we simply sum up the points obtained by each student (the points will sum up to
some number x out of 100, rounded up for fractions) and then use the following scale to determine the letter
grade:

Numeric Grade Letter Grade
[0-59] F
[60-62] D-
[63-66] D
[67-69] D+
[70-72] C-
[73-76] C
[77-79] C+
[80-82] B-
[83-86] B
[87-89] B+
[90-92] A-
[93-100] A

We do not curve the grades in any way.

Assignments and Projects

There will be approximately 8 programming assignments and two
project assignments throughout the semester.

The first 4 assignments are to be completed individually (“solo
assignments”).

The remaining assignments and projects can be optionally
completed in groups. You will be responsible for selecting a
partner to complete the assignments.

Projects

There will be two “projects”

These are longer (2 weeks), more substantial programming
exercises that will require you to plan and/or experiment more

As such, the description will be more vague than with

assignments - you are expected to do more reading, thinking,
and asking

Labs

We provide “labs” as a means to practice implementation techniques
and tools

The idea is to provide exercises related to the week’s topic, which will
prepare you better for tackling that or next week’s assignment/project

These will be graded mostly on effort - the intention is to encourage you
to do the exercises as preparation for assignments

Ideally, we would like to provide you some class time (30-60 mintes)
every week to work on the labs, but if we need more time to cover
topics, the “lab” will be purely a take-home exercise

Quizzes

Almost weekly, there will be a quiz on the topics from class
The intention is to make you engage with the material

Questions will be from lectures and readings

Course Materials/Equipment

A laptop

The laptop’s operating system shouldn’t matter, however, having a Unix-like
environment (Linux, macQOS, WSL, *BSD, ...) is an advantage

We will provide you with a cloud-based Virtual Machine for you to work on
We will use Linux for most of the course

With any programming assignment, the assumption is, that you have tested
your code on the provided VM. Regrade requests based on “it worked on
my machine” will be rejected

Requests for Regrading

After grades have been posted, there is a 3 day window to
request a regrade from the TA. If you have further issues with
TA's regrade, you may challenge the regrade with a professor.

Academic Integrity

Your first assignment is to to read the NEU academic integrity policies

Here are examples for your consideration

e Yyou work on your laptop at a library with friends and step away from your
computer without locking it

e Yyou look at your neighbors’ screen/papers during an exam, but don’t copy
their answers

e Yyou take a piece of code from some website and give a link to the website at
the end of the homework

e Yyou work on a homework problem with friends, type the solution at home,
but it's exactly the same as that of your friends

Academic Integrity

Discussion is encourage. But, you cannot share your code, exploits to your
classmates or post them online.

The university, college, and department policies against academic
dishonesty will be strictly enforced. To understand your responsibilities as a
student read: NEU Student Code of Conduct.

Plagiarism or any form of cheating in homework, assignments, labs, or
exams is subject to serious academic penalty.

Any violation of the academic integrity policy will result in a 0 on the
homework, lab or assignment, and even an F or >F< on the final grade. And,
the violation will be reported to the Dean’s office.

https://osccr.sites.northeastern.edu/code-of-student-conduct/

Disability Access Services

If you need DAS, please inform me in the first two weeks.

How to be successful in CS 3650

 Read the assigned reading before class

* Attend the class
 Ask questions
* Answer gquestions

* You need theoretical backgrounds from class to succeed in
labs/assignments/projects

How to be successful in CS 3650

* Labs/Assignments/Projects
 Plan ahead and start early
« DO NOT START AT THE LAST MOMENT
 Ask questions early
* Setting up the environment itself could take a long time
» Coding always takes longer than your expectation
* Debugging could take forever

Questions?

Here is what ‘C’ looks like

Here is what ‘C’ looks like

« compile with:
* gcc hello.c -0 hello
* clang hello.c -0 hello

Here is what ‘C’ looks like

« compile with: clang hello.c -o hello

‘clang’ is the
compiler

hello.c is the
name of our
text source
code file

Here is what ‘C’ looks like

« compile with: clang hello.c -o hello

And we are using a flag -0’

(dash lower-case Oh)
which specifies the
argument that follows is
going to output a binary
called hello.

Here is what ‘C’ looks like

« compile with: clang hello.c -o hello

brings in a library of

commands related to standard
input and output (so we can print
text to the screen)

1 #include <stdio.h>

2

int main(){

w

puts(”" Hello Computer

D ~ (o] wm S

return O0;

Here is what ‘C’ looks like

« compile with: clang hello.c -o hello

1 #include <stdio.h>

2

int main(){

w

prints something to the

puts(” Hello Compute screen. printfwill be another
popular way to do this.

D ~ (o] wm S

return O0;

Here is what ‘C’ looks like

« compile with: clang hello.c -o hello

1 #include <stdio.h>

2

int main(){

w

puts(”" Hello Computer

And finally we are done with our
program and we

D ~ (o] wm S

return O0;

C and the compilation process

* In a picture, this is the compilation process from start to finish
* (Note in this class we'll use clang, but gcc is also fine)

printf.o

Pre- = & A I—’)
hello.c hello.i | Compiler | hello.s |Assembler| hello.o Linker hello
» Processor > > —
(o) (ccl) (as) (1d)
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)

Little exercise to see what compiler is doing

« Generate assembly code
* clang -S hello.c

* Investigate assembly
« Compile assembly to executable file

* clang hello.s -o hello
. fl hello.c prozges-sor hello.i | Compiler | hello.s [Assembler| hello.o Linker hello
* Generate Object file =i (ce) o) T
Source PP Modified Assembly Relocatable Executable
program program bject bject
* clang -c hello.s o) i o) At i
(text) (binary) (binary)

* View Object File
* nl hello.o (unreadable)

* Investigate Object File

« objdump -d hello.o
(disassembly - shows assembly of machine instructions)

« objdump -t hello.o (shows symbol table)

Quick view of the assembly

clang -S hello.c

hello.s
hello.s

"hello.c"

main # -- Begin function main
.p2align 4, 0x90
.type main,@function

.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.. : .cfi_offset %rbp, -16
: movq %rsp, %rbp

clang -S hello.c e

movl $0, -4(%rbp)

. : leaq L.str(%rip), %rdi
: : callq puts@PLT

: : xorl %eax, %eax

. cat hello.s ; ida 516, wrep

popq %rbp
. : .cfi_def_cfa %rsp, 8
e e e e e e e . retq
.Lfunc_endo:
.size main, .Lfunc_end®-main
.cfi_endproc
-- End function
.type .L.str,@object # @.str
.section .rodata.str1.1,"aMS",@progbits,1

.asciz "Hello Computer Systems!"
.size .L.str, 24

.ident "Ubuntu clang version 16.0.0 (++20230112052731+edba5d58cd19-1~exp1~20230112172830.506)"
.section ".note.GNU-stack","",@progbits

.addrsig

.addrsig_sym puts

Quick view of objdump

objdump -d ./hello

/hello: file format elf64-x86-64

pisassembly of section .init:

Po00000000001000 <_init>:

fa endbr64

08 sub SOX8,%rsp

d9 2f 00 60 mov 0x2fd9(%rip),%rax # 3fe8 <_ gmon_start_ >
test %rax,%rax
je 1016 <_init+0x16>
callq *%rax
add S0x8,%rsp
retq

Pisassembly of section .plt:

po00000000001020 <.plt>:
1020: ff 35 e2 2f ox2fe2(%rip) # 4008 <_GLOBAL_OFFSET_TABLE_+0x8>
102 ff 25 e4 2f *ox2fed(%rip) # 4010 <_GLOBAL_OFFSET_TABLE_+0x10>
102c: of 1f 40 00 ox0(%rax)

b000000000001030 <puts@plt>:
1030: ff 25 e2 2f *ox2fe2(%r # 4018 <puts@GLIBC_2.2.5>
1036: 68 00 00 00 $0x0
103b: e9 eo ff ff ff 1020 <.plt>

Pisassembly of section .plt.got:

Ppo00000000001040 <_ cxa_finalize@plt>:
ff 25 b2 2f 00 00 *Ox2fb2(%rip) # 3ff8 <__cxa_finalize@GLIBC_2.2.5>
66 90 %ax ,%ax

Pisassembly of section .text:

po00000000001050 <_start>:
: of 1e fa endbr64
ed xor %ebp,%ebp
89 mov %rdx,%r9
pop %rsi
89 mov %rsp,%rdx
83 and Soxfffffffffffffffo,%rsp
push %rax
push %rsp
8d 01 00 00 lea 0x176(%rip),%r8 # 11e0 <__libc_csu_fini>
8d 00 00 00 lea oxff(%rip),%rcx # 1170 <__libc_csu_init>
8d 00 00 00 lea oxc8(%rip),%rdi # 1140 <main>
15 00 00 callqg *ox2f62(%rip) # 3fed@ <__libc_start_main@GLIBC_2.2.5>
hlt
nop

Quick view of objdump

objdump -t ./hello
./hello: file format elf64-x86-64

[SYMBOL TABLE:
[00000000000002a8 .interp 0000000000000000 .interp

.note.gnu.build-id 0000000000000000 .note.gnu.build-id

.note.ABI-tag

0000000000000000

.gnu.ha:
0000000000000330 .dynsym
00000000000003d8 .dynstr
.gnu.ve
.gnu.ve
.rela.d
0000000000000548 .rela.p
0000000000001600 .init
.plt
.plt.go
.text
00000000000011e8 .fini
00000000000026000 .rodata
0000000000002620 .eh_fra
0000000000002060 .eh_fra
0000000000003de8 .init_a
0000000000003df0 .fini_a
0000000000003df8 .dynami
0000000000003Fd8 .got
0000000000004000 .got.pl
0000000000004020 .data
0000000000004030 .bss
0000000000000000 .commen
0000000000000000 *ABS*
0000000000001080 . text
00000000000010bO .text
00000000000010f0 .text
0000000000004030 .bss
0000000000003df0 .fini_a
0000000000001130 . text
0000000000003de8 .init_a
0000000000000000 *ABS*
0000000000000000 *ABS*
000000000000214C .eh_fra
0000000000000000 *ABS*
0000000000003df0 .init_a
0000000000003df8 .dynanmi:
0000000000003de8 .init_a
0000000000002620 .eh_frai
0000000000004000 .got.pl
.init
. text
UND
0000000000004020 .data
0000000000000000 *UND*
.data
fini
UND
0000000000004620 .data
0000000000000000 *UND*
0000000000004028 .data
00000000000026000 .rodata
0000000000001170 .text
0000000000004038 .bss
0000000000001050 .text
0000000000004030 .bss
0000000000001140 . text
0000000000004030 .data
0000000000000000 *UND*
0000000000000000 *UND*

sh 0000000000000000
0000000000000000
0000000000000000

rsion 0000000000000000

rsion_r 0000000000000000

yn 0000000000000000

184 0000000000000000

0000000000000000

0000000000000000

t 0000000000000000

0000000000000000

0000000000000000
0000000000000000

me_hdr ©000000000000000

me 0000000000000000

rray 0000000000000000

rray 0000000000000000

ic 0000000000000000

0000000000000000

t 0000000000000000

0000000000000000

0000000000000000

t 0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000001

rray 0000000000000000

0000000000000000

rray 0000000000000000

0000000000000000

0000000000000000

L 0000000000000000

0000000000000000

rray 0000000000000000

(] 0000000000000000

rray 0000000000000000

me_hdr ©000000000000000

t 0000000000000000

0000000000000000

0000000000000005

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000

0000000000000000
0000000000000004

0000000000000065

0000000000000000

000000000000002

0000000000000000

0000000000000023

0000000000000000

0000000000000000

0000000000000000

.note.ABI-tag
.gnu.hash
.dynsym
.dynstr
.gnu.version
.gnu.version_r
.rela.dyn
.rela.plt

.plt.got

.rodata
.eh_frame_hdr
.eh_frame
.init_array
.fini_array
.dynamic
.got
.got.plt
.data
.bss
.comment
crtstuff.c
deregister_tm_clones
register_tm_clones
__do_global_dtors_aux
completed.8061

__do_global_dtors_aux_fini_array_entr

frame_dummy

__frame_dummy_init_array_entry

hello.c
crtstuff.
FRAME_END__

__init_array_end
_DYNAMIC
__init_array_start
__GNU_EH_FRAME_HDR
_GLOBAL_OFFSET_TABLE_

_init

__libc_csu_fini

_ITM_deregisterTMCloneTable

data_start

puUts@@GLIBC_2.2.5

_edata

.hidden _fini

__libc_start_main@@GLIBC_2.2.5

__data_start

__gmon_start__

“hidden __dso_handle
“To_stdin_used

__libc_csu_init

_end

_start

_ bss_start

main

.hidden

_ITM_reg

__cxa_finalize@@GLIBC_2.2.5

So compilers are pretty neat

« When we start looking at some of the information taken in, we
appreciate the job they do.

* i.e. transform high level language to binary

* All of a sudden, writing some C code is not so bad!
* (And it of course is better than pure binary!)

C and compilers allow us to control the system

 Core pieces of systems include
hardware(left) and operating system (right)

CPU

Register file

PC :> ALU
==

] 110 Main
e I Ga— 1Y

{} 110 bus {} Expans on slots for
other devices such

usB Graphics Disk as network adapters

System bus Memqry bus

<

controller adapter controller

<SmE
hello executable
stored on disk

Mouse Keyboard Display

C and compilers allow us to control the system

 Core pieces of systems include
hardware(left) and operating system (right)

CPU

Register file

PC :> ALU
==

it | N
Bus interface <:> bridge <:> memory Let,S ta ke a feW minutes tO

1t think about the hardware
< 1/0 bus D:D:D:l’>
b Jf JL st

System bus Memqry bus

usB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Displa SR
4 Lt Disk hello executable

stored on disk

Modern Hardware Visual Abstraction

* CPU is the “brain” of modern

hardware
* That's where 1 instruction is “egiS‘e”B
executed at a time T | e oo
« Only 1! 1L N
Bus interface rli/O 6 m':f:gr
* (Note: Modern computers have v {’} :
multiple cores/hardware threads) -]
/0 bus Expansion slots for
. We. generally measure _the speed at {} G{L {; iolpobyspnm B
which a CPU executes in Megahertz T e i
. Mouse Keyboard Displa: e
or Gigahertz y -~

* This is a metric for how ‘fast’ a
CPU performs, and how complex
of software can be run.

Modern Hardware Visual Abstraction

* Beyond the CPU, a number of cPu

devices may also be connected. Registe file
. . S

 Buses transfer information from = FA—

devices and memory into the T M

/;l\ X it
CPU. FRRioIc N1 brli/doge <1|:> m':mory
5
"needs to be reanaged | Ko e I
7 N <7 otherdevices such

» Note: Busses can be thought of conwoter | | ‘adapter i |

as simple networks, with many U A—

things hardcoded.

<

hello executable
stored on disk

CPU Socket
Many different physical socket standards
* This a Pentium 1 socket
Physical standard is less important than Instruction Set Architecture
(ISA)
« IBM PCs are Intel 80386 compatible
 Original x86 design
« Intel, AMD, VIA
Today’'s dominant ISA: x86-64, developed by AMD

A ERAZ Al

Slots for random access memory

(RAM)

Pre-1993: DRAM (Dynamic RAM)

Post-1993: SDRAM (Synchronous

DRAM)

Current standard: Double data rate

SDRAM (DDR SDRAM)
R * North Bridge

« Coordinates access to

main memaory
connected the CPU to

fast components like

G i KL RAM and GPU. It no

W O ARSRERSSE longer exists as a
separate chip because its
functions are now inside
modern CPUs.

& |

11

TN T
T': ‘\-,.J“...-rx..... e
]

u‘__
-
o
—

The northbridge was a
dedicated chip that

= ;l‘?) ¢
(N e B R
HE L .,‘._~:‘4,___::"..

§i==

« I/O device slots Built in I/0 also on the PCI/ISA bus

+ Attached to the south-bridge bus
+ Very old standard: ISA slots

« South-bridge

* Facilitates I/0 between
devices, the CPU, and
main memory

e LIRS e s s B
A o Y e 1 5
" - - LM el
- > W 5
= N
- . il
. |
S i
=3 i
. = :
> =% vith J,
A y 5
H H 7 N
H H H H "
H H H H
3 H H
H H i 5
H B z
i H H
H H S
H H .
2 H H
s H H
H H 3
H H FH
H
H B ~
2 s
'
- . I -
- [4

The south bridge is
e y the other half of the
g 4 traditional computer

_ SRS chipset, handlin
Slightly less old standard: PCI S|O\F,)\,er_speed 1/3

slots (input/output)
Other types: operations and
« AGP slots peripheral
e PCI-X slots connections.

Storage connectors
* Also controlled by the South Bridge
Old standard: Parallel ATA (P-ATA)
« AT Attachment Packet Interface (ATAPI)
 Evolution of the Integrated Drive
Electronics (IDE) standard
Other standards

« Small Computer System Interface (SCSI)
 Serial ATA (SATA)

JUNEY TR

6CFO435A9387

PERRY LA IS

scroisszoren J oCFidenmee

a L 20I€
<
=
s
866 P Reaa a Durab

T

[T
I
T

TITITIIIIII

T

e |

C and compilers allow us to control the system

 Core pieces of systems include
hardware(left) and operating system (right)

Let's take a moment to think

about operating systems

What is an Operating System?

Many Different OSes

wn
=
@)
©
=
=

Linux

BSD

Many Different OSes

Windows :

developed!

Sl You can actively contribute to the open
source ones now!

BSD

What is an Operating System?

* OS is software that sits between user programs and
hardware

Hardware
(e.g., CPU, Operating

mouse, System
keyboard)

e OS provides interfaces to computer hardware
— User programs do not have to worry about details

Shortly you will
be working in
the shell for
your lab and
homework!

htop

72839
3472

40477

1723
12917

4419
40584
40492
32482
40524
52216

9353

ziming

zining

zintng
zining

zining

zining
zining
zining
zining
zining
zining
zining
zining
zining

zining
zining

o zining

48545

72812
365
4022
4060

zining
ziming
zining
zining
ziming
zining
zining

zining

AhaNbNDRLNLG

-win:
2 Jusr/sbin/thermald --systend --dbu

htop

Jusr/Uib/xorg/Xorg vt2 -displayfd 3 -auth /run/user/1001/gdn/Xauthority -background none -noreset ptty -verbose 3
Iproc/self/exe --type=renderer --crashpad-handler-pid=52236 --enable-crash-reporter=8f2agesb-f71c-4833-bcbs-aacbs31f6436,no_cha)
Jopt/zoom/zoom zoonmtg: //northeastern. zoon. us/oin?action=join&confno=89626052948confd=dXRpZDI1VVELEX2ZYWRMGVINDI 20 TRLZWQSMzF]

Jusr/lib/firefox/firefox -contentproc -isForBrowser -prefshandle © -prefsien 44366 -prefMapHandle 1 -prefMapsize 272222 -jsInit}

Jusr/1ib/bluetooth/bluetoothd
5

Jusr/lib/Firefox/firefox -n: dow
s-enable --adaptive
Jusr/Libexec/gnome-terminal-server
Jusr/lib/slack/slas type=zygote

Jopt/google/chrone/chrome --type=renderer --crashpad-handler-pid=11138 --enable-crash-reporte:
4

Jusr/share/discord/piscord
Jusr/bin/nautilus --gapplication-service

Jusr/bin/containerd
Jusr/1ib/firefox/firefox -contentproc -isForBrowser -prefsHandle © -prefsien 41893 -prefMapHandle 1 -prefMap

9 Jopt/google/chrome/chrome --type=renderer shpad-handler-pid=11138 --enable-crash-reporter=73453b50-80d7-4908-8c45-7a32e528)

/opt/google/chrone/chrome

/home /zining/ .dropbox-dist/dropbox-Lnx.x86_64-232.3.5848/dropbox
Jusr/share/skypeforlinux/skypeforlinux --type=utility --utility-sub-type=network.mojon.Networkservi

5
/opt/zoom/ZoonkebyiewHost --type=renderer --locales-dir-path=/opt/zoon/cef/locales --log-severity:
1

/opt/google/chrome/chrone --type=renderer --crashpad-handler-pid=11138 --enable-crash-reporter=73453b56-80d7-4908-8c45-7a32s

Jopt/google/chrome/chrome --type=utility --utility-sub-type=network.nojom.Networkservice --lang=en-US -sandbox-typ
1

/opt/google/chrone/chrome --type=renderer --crashpad-handler-pid=11138 --enable-crash-reporte:
4

« OSis a resource manager and control program
ontrols execution of user programs

D
A
P

ecides between conflicting requests for hardware access

ttempts to be efficient and fair
revents errors and improper use

Two Common OS Families

« POSIX
» Anything Unix-ish
* e.g. Linux, BSDs, Mac, Android, iOS, QNX

In this course, we will

work in a POSIX
Environment.

« Windows
* Stuff shipped by Microsoft
« Many other operating systems may exist specific to a domain (e.g. an

operating system for a car, handheld gaming device, or smart
refrigerator)

Who, what, why, Linux?

* Linux is a family of free open source operating systems
« That means the code is freely available, and you can contribute to the project!

« It was created by Linus Torvalds

* Variants of Linux are: Ubuntu, Debian, Fedora, Gentoo Linux, Arch Linux,
CentOS, etc.

* They all operate under roughly the same core code, which is called the kernel.

 Often they differ by the software, user interface, and configuration settings.

 So very often linux software for one flavor of linux will run on the other with
few or no changes.

* Generally we (as systems programmers) like Linux, because it is a clean and
hackable operating system.

« When many folks think of Unix-like operating systems, they may think of a hacker
using a ‘command-line interface’ to program.

https://en.wikipedia.org/wiki/Linus_Torvalds

Over 30 years ago...

On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:
Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd 1like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-(.

vV VVVVVVVVVVVVVYVVYVVYyV

https://groups.google.com/

Over 30 years ago...

On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds wrote:

vVVVVVVVVVVVVVVYVVYVYVYV

Hello everybody out there using minix -

I'm doing a (free) operf :
professional like gnu) Linux platforms. '
since april, and 1is sta y y
things people like/disl
(same physical layout o
among other things).

, NDS32,

I've currently ported ba
This implies that I'll get som
I'd like to know what featup
are welcome, but I won't p

cal within a %ew months, and
ople would want. Any suggestions
1 implement them :-)

Linus (torv...f a.helsinki.fi)

PS. Yes - it's fp€e of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-(.

https://groups.google.com/
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/ARC_(processor)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM64
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/C6x
https://en.wikipedia.org/wiki/H8/300
https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/M68k
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/S390
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/XBurst
https://en.wikipedia.org/wiki/Xtensa

The command line interface

git pull

° The Command Iine interface is at remote: Enumerating objects: 10, done.

. R remote: Counting objects: 100% (10/10), done.
the hlghest Ievel uSt another remote: Compressing objects: 100% (2/2), done.
J remote: Total 6 (delta 4), reused 6 (delta 4), pack-reused © (from 0)
npacking objects: 100% (6/6), 229.30 KiB | 990.00 KiB/s, done.

progral I I. From github.com:Khoury-CS3650/khoury-cs3650.github.io

3dad175..a343806 main -> origin/main

pdating 3dad175..a343806

* Linux and Mac have terminals et
img/ziming.jpg | Bin -> bytes

built-in, and Windows as well (cmd B

3 files changed, 14 insertions(+), 2 deletions(-)

and powe rShe”). mode 100644 img/ziming.jpg sit pull

: Enumerating objects: 13, done.
: Counting objects: 100% (13/13), done.

o From it, We Can type in the names : Compressing objects: 100% (2/2), done.

: Total 7 (delta 3), reused 7 (delta 3), pack-reused 0@ (from 0)
Of ro ra mS to erform Work for us npacking objects: 100% (7/7), 610 bytes | 61.00 KiB/s, done.
p g p From github.com:Khoury-CS36560/khoury-cs3650.github.io
a343806..5bf6678 main -> origin/main
pdating a343806..5bf6678
Fast-forward
1/01/ferd/notes.html | 4

syllabus.html | 4
2 files changed, 4 insertions(+), 4 deletions(-)

Shell demo

e Is

* cd (cd ~, /,..) : shell built-in command
 pwd : shell built-in command

* tree

* tab

« up/down arrow

* History

* htop

Why the command line?

* You might argue “I love GUI interfaces, so simple and sleek looking”
* The command line is a lot faster than moving your mouse
« It is also very convenient for ‘scripting’ behavior that you could not so
easily do in a GUI environment.
 Executing a few commands in a row in a script is a piece of cake!

« And if you are working remotely, you often will not have any GUI
environment at all!

* (Often machines you need to access do not have a monitor
attached)

Example shell script

cat example.sh

echo "Hello S1 S2"

echo "What is your age?”

read myAge

echo "That is great you are SmyAge years old!"

Example shell script Executing

. /example.sh Ziming Zhao

Hello Ziming Zhao

What is your age?

500

That is great you are 500 years old!

Feeling overwhelmed or forgetting a command?

* Luckily there are built-in ‘manual pages’
* Called the ‘man pages’ for short.

 Simply type ‘man command_name’ for help
* (Hit ‘g’ to quit the page when you are done)

User Commands

1s - list directory contents

SYNOPSIS
1s [OPTION]... [EILE]...

DESCRIPTION
List information about the FILEs (the current directory by default). Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.

-a, --all
do not ignore entries starting with .

, --almost-all
do not list implied . and ..

--author
with -1, print the author of each file

-b, --escape
print C-style escapes for nongraphic characters

--block-size=SIZE
with -1, scale sizes by SIZE when printing them; e , '--block-size=M'; see SIZE format below

, --ignore-backups
do not list implied entries ending with ~

with -1t: sort by, and show, ctime (time of last modification of file status information); with -1: show ctime and sort by name; otherwis

-C list entries by columns

--color[=WHEN]
colorize the output; WHEN can be 'always' (default if omitted), 'auto', or 'never'; more info below

-d, --directory
list directories themselves, not their contents

-D, --dired
generate output designed for Emacs' dired mode

Linux man pages are organized into numbered sections

Section 1: User Commands
e Executable programs and shell commands that
regular users can run. Examples: Is, cp, grep, gcc
Section 2: System Calls
e Functions provided directly by the Linux kernel.
Examples: open(), read(), write(), fork()
Section 3: Library Functions
e Functions provided by programming libraries
(especially C library). Examples: printf(), malloc(),
strlen()
Section 4: Special Files
e Device files and special files (usually in /dev).
Examples: /dev/null, /dev/random
Section 5: File Formats
e Configuration file formats and conventions.
Examples: passwd (for /etc/passwd), fstab, hosts
Section 6: Games
e Games and entertainment programs
Section 7: Miscellaneous
e Conventions, macro packages, and
miscellaneous topics
e Examples: ascii, regex, signal

Section 8: System Administration
e Commands typically used by system
administrators
e Examples: mount, iptables, crontab
Section 9: Kernel Routines
e Linux kernel API documentation (less commonly
used)
Usage Examples:
e man s - shows section 1 (user command)
e man 2 open - specifically shows section 2
(system call)
e man 3 printf - shows section 3 (library function)
e man4tty
You can see which sections contain a particular topic
using man -k keyword or apropos keyword.

Xv6: A teaching operating system!

* https://github.com/mit-pdos/xv6-public

Xv6, a simple Unix-like teaching operating system

The lastest version of xvo is at: xv6

Introduction

Xvo is a teaching operating system developed in the summer of 2006 for MIT's operating systems course, 0.828: Operating System Engineering,

History and Background

For many years, MIT had no operating systems course. In the fall of 2002, one was created to teach operating systems engineering. In the course
students to multiple systems—V6 and Jos-helped develop a sense of the spectrum of operating system designs.

V6 presented pedagogic challenges from the start. Students doubted the relevance of an obsolete 30-year-old operating system written in an obsc
2006, we had decided to replace V6 with a new operating system, xv6, modeled on V6 but written in ANSI C and running on multiprocessor Int
threads (instead of using special-case solutions for uniprocessors such as enabling/disabling interrupts) and helps relevance. Finally, writing a ne

XV6

« We will be using xv6 to build and implement some Operating Systems
features

* This will give you experience adding features to a large piece of
software.

