
Assembly

Week 2

CS 3650 Computer Systems – Spring 2026

* Acknowledgements: created based on Mike Shah, Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Recall the C toolchain pipeline
• All C programs go through this transformation of C --> Assembly -->

Machine Code

3

Assembly is important in our toolchain
• Even if the step is often hidden from us!

8

Intel and x86 Instruction set
• There is a specific instruction set to program CPUs
• Popularized by Intel
• Other companies have contributed.

• AMD has been the main competitor

• (AMD was first to really nail 64 bit architecture around 2001)
• Intel followed up a few years later (2004)
• Intel remains the dominant architecture
• x86 is a CISC architecture

• (CISC pronounced /ˈsɪsk/)

9

https://en.wikipedia.org/wiki/X86

CISC versus RISC

• Complex Instruction Set
Computer (CISC)
• Instructions do more per

operation
• Architecture understands a

series of operations

• Performance can be nearly as
fast or equal to RISC

• Reduced Instruction Set
Computer (RISC)
• Instructions are very small
• Performance is extremely fast
• Generally a simpler

architecture

10

Introduction to Assembly

How are programs created?
• Compile a program to an executable

• gcc main.c -o program

• Compile a program to assembly
• gcc main.c -S -o main.s

• Compile a program to an object file (.o file)
• gcc -c main.c

• Linker (A program called ld) then takes all of your object files and
makes a binary executable.

12

Focus on this step today -- pretend C does not exist

• Compile a program to an executable
• gcc main.c -o program

• Compile a assembly program to an executable
• gcc main.s -o main

• Compile an assembly program to an object file (.o file)
• gcc -c main.s

• Linker (A program called ld) then takes all of your object files and
makes a binary executable.

13

Layers of Abstraction
• As a C programmer you worry about C code

• You work with variables, do some memory management using malloc
and free, etc.

• As an assembly programmer, you worry about assembly
• You also maintain the registers, condition codes, and memory

• As a hardware engineer (programmer)
• You worry about cache levels, layout, clocks, etc.

14

Assembly Abstraction layer
• With Assembly, we lose some of the information we have in C

• In higher-order languages we have many different data types which
help protect us from errors.
• For example: int, long, boolean, char, string, float, double, complex, …
• In C there are custom data types (structs for example)
• Type systems help us avoid inconsistencies in how we pass data

around.

• In Assembly we lose unsigned/signed information as well!
• However, we do have two data types
• Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes)

[byte = 8 bits]
• We are going to focus on integers in this course

15

Sizes of data types (C to assembly)

16

C Declaration Intel Data Type Assembly-code
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

*Size always depends on architecture

Sizes of data types (C to assembly)

17

C Declaration Intel Data Type Assembly-code
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

For us, one word of data is 64 bits
[8 bytes] but may vary on other hardware

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://stackoverflow.com/questions/7750140/whats-the-difference-between-a-word-and-byte

View as an assembly programmer
• Register - where we store data (heavily used data)
• PC - gives us address of next instruction
• Condition codes - some status information
• Memory – where the program (code) resides and data is stored

18

Assembly Operations (i.e. Our instruction set)
• Things we can do with assembly (and this is about it!)

• Transfer data between memory and register
• Load data from memory to register
• Store register data back into memory

• Perform arithmetic/logical operations on registers and memory
• Transfer Control

• Jumps
• Branches (conditional statements)

19

x86-64 Registers
• Focus on the 64-bit

column.
• These are 16 general

purpose registers for
storing bytes
• (Note sometimes

we do not always
have access to all
16 registers)

• Registers are similar
to variables where
we store values

20

x86-64 Register (zooming in)
• Note register eax addresses the lower 32 bits of rax
• Note register ax addresses the lower 16 bits of eax
• Note register ah addresses the high 8 bits of ax
• Note register al (lowercase L) addresses the low 8 bits of ax

21

Some registers are reserved for special use
(More to come)
• This can be dependent on the instruction being used

• %rsp - keeps track of where the stack pointer is
• (We will do an example with the stack and what this means soon)

22

Program Counter and Memory Addresses

23

Code
Addr 0x00A0 mov ..
Addr 0x00A4 mov ..
Addr 0x00A8 add ..

Data
Addr 0x00F0 Var X
Addr 0x00F4 Var Y

Registers:
rax, rbx, rcx rdx, …

Memory Addresses

24

● Note that we are looking at virtual addresses in
our assembly when we see addresses.

● This makes us think of the program as a large
byte array.
○ The operating system takes care of

managing this for us with virtual memory.
○ This is one of the key jobs of the operating

system

A First Assembly Instruction

25

Moving data around | mov instruction
• (Remember moving data is all machines do!)
• movq - moves a quad word (8 bytes) of data
• movd - move a double word (4 bytes) of data

movq Source, Dest

26

Order matters
“source to

destination”
“left to right”

AT&T Syntax

Moving data around | mov instruction
• (Remember moving data is all machines do!)
• movq - moves a quad word (8 bytes) of data
• movd - move a double word (4 bytes) of data

movq Source, Dest

• Source or Dest Operands can have different addressing modes
• Immediate - some memory address $0x333 or $-900
• Memory - (%rax) dereferences gets the value in the register and use

it as address
• Register - Just %rax

27

Addr ess:
0xFFFFFFFF
…
0x00000000

Registers:
rax, rbx, rcx rdx,
…

Full List of Memory Addressing Modes

28

Mode Example

Global Symbol MOVQ x, %rax

Immediate MOVQ $56, %rax

Register MOVQ %rbx, %rax

Indirect MOVQ (%rsp), %rax

Base-Relative MOVQ -8(%rbp), %rax

Offset-Scaled-Base-Relative MOVQ -16(%rbx, %rcx, 8), %rax
(base, index, scale)

Copy data from
addr pointed by
rbp minus 8 to

rax

(rbx + rcx * 8) - 16

C equivalent of movq instructions | movq src, dest

29

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that
location to value stored in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location
(%rdx = *p)

What does each movq do?

C equivalent of movq instructions | movq src, dest

30

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that
location to value stored in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location
(%rdx = *p)

Some registers are reserved for special use
(More to come)
• This can be dependent on the instruction being used
• %rsp - keeps track of where the stack is for example
• %rdi - the first program argument in a function
• %rsi - the second argument in a function
• %rdx - the third argument of a function
• %rax – return value of a function

31

These conventions
are especially useful
for functions known
as system calls.

https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/

Some registers are reserved for special use
(More to come)
• This can be dependent on the instruction being used
• %rsp - keeps track of where the stack is for example
• %rdi - the first program argument in a function
• %rsi - the second argument in a function
• %rdx - the third argument of a function
• %rax – return value of a function
• %rip - the Program Counter

32

Some registers are reserved for special use
• This can be dependent on the instruction being used
• %rsp - keeps track of where the stack is for example
• %rdi - the first program argument in a function
• %rsi - the second argument in a function
• %rdx - the third argument of a function
• %rax – return value of a function
• %rip - the Program Counter
• %r8-%r15 - These eight registers are general purpose registers

33

Success strategies

• Review the Resources posted on each Week of the
Schedule

• Review my slides and the resource listing weekly

• Organize a study group

• Write (lots of) tiny test code

34

A little example

35

What does this function do?
(take a few moments to think)
• void mystery(<type> a, <type> b) {

????

}

• mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

36

Cheat Sheet

swap of long

• void mystery(long *a, long *b) {
long t0 = *a;
long t1 = *b;
*a = t1;
*b = t0;

}

37

Cheat Sheet

• mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

END Lecture

38

More assembly instructions
• addq Src, Dest Dest=Dest+Src
subq Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shlq Src, Dest Dest=Dest << Src
shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ^ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

• Note on order:
We use AT&T syntax: op Src, Dest
Intel syntax: op Dest, Src

39

Value 1 Value 2

x 0110 0011 1001 0101

x>>4 (arithmetic) 0000 0110 1111 1001

x>>4 (logical) 0000 0110 0000 1001

Exercise

• If I have the expression

c = b*(b+a)

• How should I write this is ASM?

Hint: Use BODMAS (Brackets,
Orders, Division & Multiplication,
Addition & Subtraction)

40

Cheat Sheet

Exercise

• If I have the expression

c = b*(b+a)

• How should I write this in
ASM?

41

Cheat Sheet

• movq a, %rax
movq b, %rbx
addq %rbx, %rax
imulq %rbx
movq %rax, c

IMULQ has a variant with one
operand which multiplies by
whatever is in %rax and stores
result in %rax

imulq has three forms
• imulq X : rax = X * rax
• imulq X Y : Y = X * Y
• imulq X Y Z : Z = X * Y

Some common operations with one-operand
• incq Dest Dest = Dest + 1
• decq Dest Dest = Dest - 1
• negq Dest Dest = -Dest
• notq Dest Dest = ~Dest

42

More Anatomy of Assembly Programs

43

Assembly output of hello.c
• Lines that start with “.” are

compiler directives.
• This tells the assembler

something about the program
• .text is where the actual code

starts.
• Lines that end with “:” are labels

• Useful for control flow
• Lines that start with . and end

with : are usually temporary
locals generated by the compiler.

• Reminder that lines that start with
% are registers

• (.cfi stands for call frame
information)

44

https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for
https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for

Where to Learn more?
• https://diveintosystems.org/

• Intel® 64 and IA-32 Architectures Software Developer Manuals

45

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

(Volume 2 Instruction set reference)

46

So far we looked at moving data and
doing some operations on data

What’s missing?

47

Comparisons

Compare operands: cmp_, jmp_, set__
• Often we want to compare the values of two registers

• Think if, then, else constructs or loop exit or switch conditions

• cmpq Src2, Src1
• cmpq Src2, Src1 is equivalent to computing Src1-Src2

(but there is no destination register)

• Now we need a method to use the result of compare, but there is
not destination to find the result.

What do we do?

49

Remember condition codes?
• Register - where we store data (heavily used data)
• PC - gives us address of next instruction
• Condition codes - some status information
• Memory – where the program (code) resides and data is stored

50

FLAGS registers
• CF (carry flag)

• Set to 1 when there is a carry out in an unsigned arithmetic operation
• Otherwise set to 0

• ZF (zero flag)
• Set to 1 when the result of an arithmetic operation is zero
• Otherwise set to 0

• SF (signed flag)
• Set to 1 when there is a carry out in a signed arithmetic operation
• Otherwise set to 0

• OF (overflow flag)
• Set to 1 when signed arithmetic operations overflow
• Otherwise set to 0

51

Conditional Branches (jumps)

Using the result from cmp => jmp instructions
• In order to read result from cmp, we use jmp to a label

65

Jump instructions | Typically used after a compare

66

Condition Description

jmp 1 unconditional

je ZF jump if equal to 0

jne ~ZF jump if not equal to 0

js SF Negative

jns ~SF non-negative

jg ~(SF^OF) & ~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal

jl (SF^OF) Less (Signed)

jle (SF ^ OF) | ZF Less or Equal

ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)

Conditional Branch | if-else
• long absoluteDifference (long x, long y) {

long result;

if (x > y)
result = x-y;

else
result = y-x;

}

• absoluteDifference:

67

Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value
cmpq src2, src1 = src1 – src2 and sets flags
jle x = jump to x if less than or equal

Take a moment to think about the ASM code

cmpq %rsi, %rdi
jle .else
movq %rdi, %rax
subq %rsi, %rax
ret

movq %rsi, %rax
subq %rdi, %rax
ret

.else:

Code Exercise
(Take a moment to think what this assembly does)

movq $0, %rax
mystery:

incq %rax
cmpq $5, %rax
jl mystery

68

Code Exercise | Annotated (while loop example)

movq $0, %rax
mystery:

incq %rax
cmpq $5, %rax
jl mystery

• Move the value 0 into %rax
(temp = 0)

• Increment %rax
(temp = temp + 1;)

• Compare %rax with 5
• If %rax is smaller than 5 then

jump to ‘mystery’
If not then

proceed

69

Code Exercise | Annotated (while loop example)

movq $0, %rax
mystery:

incq %rax
cmpq $5, %rax
jl mystery

• Move the value 0 into %rax
(temp = 0)

• Label of a location
• Increment %rax

(temp = temp + 1;)
• Compare %rax with 5
• If %rax is smaller than 5 then

jump to ‘mystery’
If not then

proceed

70

long temp = 0;
do {

temp = temp + 1;
}

while(temp < 5);

Equivalent C Code

