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Recall the C toolchain pipeline
• All C programs go through this transformation of C --> Assembly --> 

Machine Code 
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Assembly is important in our toolchain 
• Even if the step is often hidden from us!
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Intel and x86 Instruction set 
• There is a specific instruction set to program CPUs
• Popularized by Intel
• Other companies have contributed. 

• AMD has been the main competitor

• (AMD was first to really nail 64 bit architecture around 2001)
• Intel followed up a few years later (2004)
• Intel remains the dominant architecture
• x86 is a CISC architecture

• (CISC pronounced /ˈsɪsk/)
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https://en.wikipedia.org/wiki/X86


CISC versus RISC

• Complex Instruction Set 
Computer (CISC)
• Instructions do more per 

operation
• Architecture understands a 

series of operations

• Performance can be nearly as 
fast or equal to RISC

• Reduced Instruction Set 
Computer (RISC)
• Instructions are very small
• Performance is extremely fast
• Generally a simpler 

architecture
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Introduction to Assembly



How are programs created?
• Compile a program to an executable

• gcc main.c -o program

• Compile a program to assembly
• gcc main.c -S -o main.s

• Compile a program to an object file (.o file) 
• gcc -c main.c

• Linker (A program called ld) then takes all of your object files and 
makes a binary executable.
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Focus on this step today -- pretend C does not exist

• Compile a program to an executable
• gcc main.c -o program

• Compile a assembly program to an executable
• gcc main.s -o main

• Compile an assembly program to an object file (.o file) 
• gcc -c main.s

• Linker (A program called ld) then takes all of your object files and 
makes a binary executable.

13



Layers of Abstraction
• As a C programmer you worry about C code

• You work with variables, do some memory management using malloc 
and free, etc.

• As an assembly programmer, you worry about assembly
• You also maintain the registers, condition codes, and memory

• As a hardware engineer (programmer)
• You worry about cache levels, layout, clocks, etc.
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Assembly Abstraction layer
• With Assembly, we lose some of the information we have in C

• In higher-order languages we have many different data types which 
help protect us from errors.
• For example: int, long, boolean, char, string, float, double, complex, …
• In C there are custom data types (structs for example)
• Type systems help us avoid inconsistencies in how we pass data 

around.

• In Assembly we lose unsigned/signed information as well!
• However, we do have two data types
• Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes) 

[byte = 8 bits]
• We are going to focus on integers in this course
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Sizes of data types ( C to assembly)
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C Declaration Intel Data Type Assembly-code 
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

*Size always depends on architecture



Sizes of data types ( C to assembly)
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C Declaration Intel Data Type Assembly-code 
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

For us, one word of data is 64 bits 
[8 bytes] but may vary on other hardware

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://stackoverflow.com/questions/7750140/whats-the-difference-between-a-word-and-byte


View as an assembly programmer
• Register - where we store data (heavily used data)
• PC - gives us address of next instruction
• Condition codes - some status information
• Memory – where the program (code) resides and data is stored
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Assembly Operations (i.e. Our instruction set)
• Things we can do with assembly (and this is about it!)

• Transfer data between memory and register
• Load data from memory to register
• Store register data back into memory

• Perform arithmetic/logical operations on registers and memory
• Transfer Control

• Jumps
• Branches (conditional statements)
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x86-64 Registers
• Focus on the 64-bit 

column.
• These are 16 general 

purpose registers for 
storing bytes
• (Note sometimes 

we do not always 
have access to all 
16 registers)

• Registers are similar 
to variables where 
we store values
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x86-64 Register (zooming in)
• Note register eax addresses the lower 32 bits of rax
• Note register ax addresses the lower 16 bits of eax
• Note register ah addresses the high 8 bits of ax
• Note register al (lowercase L) addresses the low 8 bits of ax

21



Some registers are reserved for special use 
(More to come)
• This can be dependent on the instruction being used

• %rsp - keeps track of where the stack pointer is
• (We will do an example with the stack and what this means soon)
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Program Counter and Memory Addresses
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Code
Addr 0x00A0 mov ..
Addr 0x00A4 mov ..
Addr 0x00A8 add ..

Data
Addr 0x00F0 Var X
Addr 0x00F4 Var Y

Registers:
rax, rbx, rcx rdx, …



Memory Addresses

24

● Note that we are looking at virtual addresses in 
our assembly when we see addresses.

● This makes us think of the program as a large 
byte array.
○ The operating system takes care of 

managing this for us with virtual memory.
○ This is one of the key jobs of the operating 

system



A First Assembly Instruction
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Moving data around | mov instruction
• (Remember moving data is all machines do!)
• movq - moves a quad word (8 bytes) of data
• movd - move a double word (4 bytes) of data

movq Source, Dest 
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Order matters
“source to 

destination”
“left to right”

AT&T Syntax



Moving data around | mov instruction
• (Remember moving data is all machines do!)
• movq - moves a quad word (8 bytes) of data
• movd - move a double word (4 bytes) of data

movq Source, Dest

• Source or Dest Operands can have different addressing modes
• Immediate - some memory address $0x333 or $-900
• Memory - (%rax) dereferences gets the value in the register and use 

it as address
• Register - Just %rax
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Addr ess:
0xFFFFFFFF
…
0x00000000

Registers:
rax, rbx, rcx rdx, 
…



Full List of Memory Addressing Modes

28

Mode Example

Global Symbol MOVQ x, %rax

Immediate MOVQ $56, %rax

Register MOVQ %rbx, %rax

Indirect MOVQ (%rsp), %rax

Base-Relative MOVQ -8(%rbp), %rax

Offset-Scaled-Base-Relative MOVQ -16(%rbx, %rcx, 8), %rax
(base, index, scale)

Copy data from 
addr pointed by 
rbp minus 8 to 

rax

(rbx + rcx * 8) - 16



C equivalent of movq instructions | movq src, dest
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movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that 
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that 
location to value stored in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location 
(%rdx = *p)

What does each movq do?



C equivalent of movq instructions | movq src, dest
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movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that 
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that 
location to value stored in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location 
(%rdx = *p)



Some registers are reserved for special use 
(More to come)
• This can be dependent on the instruction being used
• %rsp - keeps track of where the stack is for example
• %rdi - the first program argument in a function
• %rsi - the second argument in a function
• %rdx - the third argument of a function
• %rax – return value of a function
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These conventions 
are especially useful 
for functions known 
as system calls. 

https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/


Some registers are reserved for special use 
(More to come)
• This can be dependent on the instruction being used
• %rsp - keeps track of where the stack is for example
• %rdi - the first program argument in a function
• %rsi - the second argument in a function
• %rdx - the third argument of a function
• %rax – return value of a function
• %rip - the Program Counter
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Some registers are reserved for special use
• This can be dependent on the instruction being used
• %rsp - keeps track of where the stack is for example
• %rdi - the first program argument in a function
• %rsi - the second argument in a function
• %rdx - the third argument of a function
• %rax – return value of a function
• %rip - the Program Counter
• %r8-%r15 - These eight registers are general purpose registers
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Success strategies

• Review the Resources posted on each Week of the 
Schedule

• Review my slides and the resource listing weekly

• Organize a study group

• Write (lots of) tiny test code
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A little example
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What does this function do? 
(take a few moments to think)
• void mystery(<type> a, <type> b) {

????

}

• mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret
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Cheat Sheet



swap of long

• void mystery(long *a, long *b) {
long t0 = *a;
long t1 = *b;
*a = t1;
*b = t0;

}
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Cheat Sheet

• mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret



END Lecture
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More assembly instructions 
• addq Src, Dest Dest=Dest+Src
subq Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shlq Src, Dest Dest=Dest << Src
shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ^ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

• Note on order: 
We use AT&T syntax: op Src, Dest
Intel syntax: op Dest, Src
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Value 1 Value 2

x 0110 0011 1001 0101

x>>4 (arithmetic) 0000 0110 1111 1001

x>>4 (logical) 0000 0110 0000 1001



Exercise

• If I have the expression 

c = b*(b+a) 

• How should I write this is ASM?

Hint: Use BODMAS (Brackets, 
Orders, Division & Multiplication, 
Addition & Subtraction)
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Cheat Sheet



Exercise

• If I have the expression 

c = b*(b+a) 

• How should I write this in 
ASM?
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Cheat Sheet

• movq a, %rax
movq b, %rbx
addq %rbx, %rax
imulq %rbx
movq %rax, c

IMULQ has a variant with one 
operand which multiplies by 
whatever is in %rax and stores 
result in %rax

imulq has three forms
• imulq X : rax = X * rax
• imulq X Y : Y = X * Y
• imulq X Y Z : Z = X * Y



Some common operations with one-operand
• incq Dest Dest = Dest + 1
• decq Dest Dest = Dest - 1
• negq Dest Dest = -Dest
• notq Dest Dest = ~Dest
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More Anatomy of Assembly Programs
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Assembly output of hello.c 
• Lines that start with “.” are 

compiler directives. 
• This tells the assembler 

something about the program
• .text is where the actual code 

starts.
• Lines that end with “:” are labels

• Useful for control flow
• Lines that start with . and end 

with : are usually temporary 
locals generated by the compiler. 

• Reminder that lines that start with 
% are registers

• (.cfi stands for call frame 
information)
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https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for
https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for


Where to Learn more?
• https://diveintosystems.org/

• Intel® 64 and IA-32 Architectures Software Developer Manuals
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https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm


(Volume 2 Instruction set reference)
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So far we looked at moving data and 
doing some operations on data

What’s missing?
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Comparisons



Compare operands: cmp_, jmp_, set__
• Often we want to compare the values of two registers 

• Think if, then, else constructs or loop exit or switch conditions

• cmpq Src2, Src1
• cmpq Src2, Src1 is equivalent to computing Src1-Src2

(but there is no destination register)

• Now we need a method to use the result of compare, but there is 
not destination to find the result.

What do we do?
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Remember condition codes?
• Register - where we store data (heavily used data)
• PC - gives us address of next instruction
• Condition codes - some status information
• Memory – where the program (code) resides and data is stored
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FLAGS registers
• CF (carry flag)

• Set to 1 when there is a carry out in an unsigned arithmetic operation
• Otherwise set to 0

• ZF (zero flag)
• Set to 1 when the result of an arithmetic operation is zero
• Otherwise set to 0

• SF (signed flag)
• Set to 1 when there is a carry out in a signed arithmetic operation
• Otherwise set to 0

• OF (overflow flag)
• Set to 1 when signed arithmetic operations overflow
• Otherwise set to 0
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Conditional Branches (jumps)



Using the result from cmp => jmp instructions
• In order to read result from cmp, we use jmp to a label
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Jump instructions | Typically used after a compare 
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Condition Description

jmp 1 unconditional

je ZF jump if equal to 0

jne ~ZF jump if not equal to 0

js SF Negative

jns ~SF non-negative

jg ~(SF^OF) & ~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal

jl (SF^OF) Less (Signed)

jle (SF ^ OF) | ZF Less or Equal

ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)



Conditional Branch | if-else
• long absoluteDifference (long x, long y) {

long result;

if (x > y)
result = x-y;

else
result = y-x;

}

• absoluteDifference:
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Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value
cmpq src2, src1 = src1 – src2 and sets flags
jle x = jump to x if less than or equal

Take a moment to think about the ASM code

cmpq %rsi, %rdi
jle .else
movq %rdi, %rax
subq %rsi, %rax
ret

movq %rsi, %rax
subq %rdi, %rax
ret

.else:



Code Exercise 
(Take a moment to think what this assembly does)

movq $0, %rax
mystery:

incq %rax
cmpq $5, %rax
jl mystery
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Code Exercise | Annotated (while loop example)

movq $0, %rax
mystery:

incq %rax
cmpq $5, %rax
jl  mystery

• Move the value 0 into %rax 
(temp = 0)

• Increment %rax 
(temp = temp + 1;)

• Compare %rax with 5
• If %rax is smaller than 5 then

jump to ‘mystery’ 
If not then

proceed
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Code Exercise | Annotated (while loop example)

movq $0, %rax
mystery:

incq %rax
cmpq $5, %rax
jl  mystery

• Move the value 0 into %rax 
(temp = 0)

• Label of a location
• Increment %rax 

(temp = temp + 1;)
• Compare %rax with 5
• If %rax is smaller than 5 then

jump to ‘mystery’ 
If not then

proceed
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long temp = 0;
do {

temp = temp + 1;
} 

while(temp < 5);

Equivalent C Code


