CS 3650 Computer Systems — Spring 2026

Assembly

Week 2

Northeastern
University * Acknowledgements: created based on Mike Shah, Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Recall the C toolchain pipeline

e All C programs go through this transformation of C --> Assembly -->
Machine Code

hello.c

Source
program
(text)

Pre-
processor

(cpp)

hello.1

Northeastern
University

Modified
source
program
(text)

Compiler
(ccl)

Linker
(1d)

hello

»
>

printf.o
hello.s |Assembler| hello.o
(as) i
Assembly Relocatable
program object
(text) programs
(binary)

Executable
object
program
(binary)

Assembly is important in our toolchain

* Even if the step is often hidden from us!

printf.o

TOCESSOr o Compiler)| hello.s |Assembler| hello.o LiNnKel
> M "vuuu r \ ' (as) 1
Sourct ‘ | Modified | Assembly Relocatable| |
roaram Urce program object
, : (text) programs
(binary)
Northeastern

University

Intel and x86 Instruction set

* There is a specific instruction set to program CPUs

Popularized by Intel

Other companies have contributed.
* AMD has been the main competitor

(AMD was first to really nail 64 bit architecture around 2001)

Intel followed up a few years later (2004)

Intel remains the dominant architecture

x86 is a CISC architecture
* (CISC pronounced /'s1isk/)

Northeastern 9
University

https://en.wikipedia.org/wiki/X86

CISC versus RISC

 Complex Instruction Set * Reduced Instruction Set
Computer (CISC) Computer (RISC)
* Instructions do more per * |nstructions are very small
operation Performance is extremely fast
* Architecture understands a « Generally a simpler
series of operations architecture

* Performance can be nearly as
fast or equal to RISC

Northeastern 10

University

Introduction to Assembly

Northeastern
University

How are programs created?

* Compile a program to an executable
* gcC main.c -0 program

Compile a program to assembly
* gcc main.c -S -0 main.s

Compile a program to an object file (.o file)
* gcc -Cc main.c

Linker (A program called Id) then takes all of your object files and
makes a binary executable.

Northeastern
University

Focus on this step today -- pretend C does not exist

+ CompHeaprogram-toan-exccutable
+ cccmath-c—o-program

Compile a assembly program to an executable
* gCcc main.s -0 main

Compile an assembly program to an object file (.o file)
* gCcc -C main.s

Linker (A program called Id) then takes all of your object files and
makes a binary executable.

Northeastern
University

Layers of Abstraction

* Asa C programmer you worry about C code

* You work with variables, do some memory management using malloc
and free, etc.

* As an assembly programmer, you worry about assembly
* You also maintain the registers, condition codes, and memory

* As a hardware engineer (programmer)
* You worry about cache levels, layout, clocks, etc.

Northeastern
University

Assembly Abstraction layer

With Assembly, we lose some of the information we have in C

In higher-order languages we have many different data types which
help protect us from errors.

 For example: int, long, boolean, char, string, float, double, complex, ...
* In C there are custom data types (structs for example)

* Type systems help us avoid inconsistencies in how we pass data
around.

In Assembly we lose unsigned/signed information as well!
* However, we do have two data types

* Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes)
[byte = 8 bits]

* We are going to focus on integers in this course

Northeastern
University

Sizes of data types (C to assembly)

Northeastern
University

16

Sizes of data types (C to assembly)

University

C Declaration Intel Data Type Assembly-code Size (bytes)
suffix
char Byte
short Word
int Double word For us, one of datais bits
long Quad word [8 bytes] but may vary on other hardware
char * Quad word
float Single precision
double Double Precision 8
Northeastern

17

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://stackoverflow.com/questions/7750140/whats-the-difference-between-a-word-and-byte

View as an assembly programmer

Register - where we store data (heavily used data)

PC - gives us address of next instruction

Condition codes - some status information

Memory — where the program (code) resides and data is stored

CPU

PC

Registers

Addresses

Condition
Codes

<

Data

g

Instructions

>

Northeastern
University

Memory

Code
Data
Stack

18

Assembly Operations (i.e. Our instruction set)

* Things we can do with assembly (and this is about it!)

* Transfer data between memory and register

* Load data from memory to register

» Store register data back into memory
* Perform arithmetic/logical operations on registers and memory
* Transfer Control

* Jumps

* Branches (conditional statements)

CPU Memor
Addresses y
Registers ™
8 Data Code
PC < > Data
Condition Instructions Stack
Codes <

Northeastern
University

Xx86-64 Registers

Not modified for 8-bit operands

¢ FOCUS on the 64'bit Not modified for l()-bilupcrunds
Register Zero-extended for Low
CO I umn. cnciding 32-bit operands 8bit 16-bit 32-bit | 64-bil
0 AHTY AL AX EAX | RAX
* These are 16 general 3 BHf [BL | BX EBX | RBX
. 1 CHy CL CX ECX | RCX
purpose registers for 5 DHT | DL | DX EDX | RDX
Storing bytes 6 SIL: SI ESI RSI
7 DIL: DI EDI RDI
* (Note sometimes ; BRL: | BP EBP | REP
4 SPL} SP ESP RSP
we do not always 8 RSB | RSW RSD | RS
9 R9B | R9W RYD R9
have dCCess to a” 10 RI10B | RIOW RI10D | RI10
16 registers) 1 RIIB | RIIW RIID | RIl
12 RI2B | RI2ZW RI2D | RI12
PY 1 1 1 13 RI3B | RI3W RI13D | RI3
Reglst.ers are similar e et v
to variables where 15 RISB | RISW RISD | RIS
63 32 31 16 15 8 7 0
we StO e VaIUES 1 Not legal with REX prefix + Requires REX prefix
Northeastern 20

University

x86-64 Register (zooming in)

* Note register eax addresses the lower 32 bits of rax
* Note register ax addresses the lower 16 bits of eax
* Note register ah addresses the high 8 bits of ax

* Note register al (lowercase L) addresses the low 8 bits of ax

rax

aX

Leo
al

eax

J

Northeastern
University

Some registers are reserved for special use
(More to come)
* This can be dependent on the instruction being used

e %rsp - keeps track of where the stack pointer is
* (We will do an example with the stack and what this means soon)

Northeastern
University

Program Counter and Memory Addresses

Registers:
rax, rbx, rcx rdx, ...
CPU Code
Addresses
. P Addr 0x00AO mov ..
- Addr 0x00A4 mov ..
Data Addr 0x00AS add ..
Condition I - Data
nstructions
Codes Addr O0xO0FO Var X
Addr OxO0F4 Var Y
Northeastern 23

University

Memory Addresses

Note that we are looking at virtual addresses in
our assembly when we see addresses.

This makes us think of the program as a large
byte array.

o The operating system takes care of
managing this for us with virtual memory.

o This is one of the key jobs of the operating
system

Northeastern
University

Memory

Code
Data
Stack

24

Northeastern
University

A First Assembly Instruction

25

Moving data around | mov instruction

 (Remember moving data is all machines do!)
* movq - moves a quad word (8 bytes) of data

* movd - move a double word (4 bytes) of data

movqg Source, Dest

Order matters

“source to
destination”
“left to right”

AT&T Syntax

Northeastern
University

26

Moving data around | mov instruction

 (Remember moving data is all machines do!)

* movq - moves a quad word (8 bytes) of data

* movd - move a double word (4 bvtes) of data

If'hll

Registers:

rax, rbx, rcx rdx,
movg Source, Dest | ™% R

Registers

-

Addresses

Addr ess:
OxFFFFFFFF

0x00000000

P

Condition
Codes

Data

Instructions
«

~

/_/

Memory

Code
Data
Stack

* Source or Dest Operands can have ditterent addressing modes

* Immediate - some memory address $SO0x333 or $-900
 Memory - (%rax) dereferences gets the value in the register and use

it as address
* Register - Just %rax

Northeastern
University

27

Full List of Memory Addressing Modes

Copy data from
addr pointed by
rbp minus 8 to

rax

(rbx +rcx * 8) - 16
Northeastern L J 28

University

C equivalent of movq instructions | movq src, dest

What does each movq do?

Northeastern
University

29

C equivalent of movq instructions | movq src, dest

Northeastern
University

30

Some registers are reserved for special use
(More to come)

* This can be dependent on the instruction being used
* %rsp - keeps track of where the stack is for example
* %rdi - the first program argument in a function

* %rsi - the second argument in a function

* %rdx - the third argument of a function

 %rax —return value of a function

1 write Sys write fs/read write.c

These conventions

are especially useful %rdi %rsi %rdx
for functions known

unsigned int fd const char __user * buf size_t count
as system calls. = =

https://filippo.io/linux-syscall-table/

Northeastern 31
University

https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/

Some registers are reserved for special use
(More to come)

* This can be dependent on the instruction being used
* %rsp - keeps track of where the stack is for example
* %rdi - the first program argument in a function

* %rsi - the second argument in a function

* %rdx - the third argument of a function

* %rax —return value of a function

* %rip - the Program Counter

Northeastern
University

Some registers are reserved for special use

* This can be dependent on the instruction being used

%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - the second argument in a function

%rdx - the third argument of a function

%rax — return value of a function

%rip - the Program Counter

%r8-%rl15 - These eight registers are general purpose registers

Northeastern
University

Success strategies

Review the Resources posted on each Week of the
Schedule

Review my slides and the resource listing weekly

Organize a study group

Write (lots of) tiny test code

Northeastern
University

Northeastern
University

A little example

35

What does this function do?
(take a few moments to think)

* void mystery(<type> a, <type> b) { * mystery:
movq (%rdi), %rax
77?7 movq (%rsi), %rdx
movq %rdx, (%rdi)
} movq %rax, (%rsi)
ret
Cheat Sheet

(Note: This can be dependent on the instruction being
used)

%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These ones are actually the general purpose
registers

Northeastern
University

swap of long

» void mystery(long *a, long *b) { * mystery:
long t0 = *3; movq (%rdi), %rax
long t1 = *b; movq (%rsi), %rdx
*a=1tl1; movq %rdx, (%rdi)
*b = t0; movq %rax, (%rsi)
} ret
Cheat Sheet

(Note: This can be dependent on the instruction being
used)

%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These ones are actually the general purpose
registers

Northeastern
University

Northeastern
University

END Lecture

38

More assembly instructions

e addg Src, Dest Dest=Dest+Src
subg Src, Dest Dest=Dest-Src
imulg Src, Dest Dest=Dest*Src
salg Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shlg Src, Dest Dest=Dest << Src
shrqg Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ~ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src
Value 1 Value 2
* Note on order: X 0110 0011 | 1001 0101

We use AT&T syntax: op Src, Dest| ,..4 (arithmetic) | 0000 0110 | 1111 1001

Intel syntax: op Dest, Src

x>>4 (logical) 0000 0110 | 0000 1001

Northeastern
University

Exercise

* |If | have the expression

c = b*(b+a)

e How should | write this is ASM?

Hint: Use BODMAS (Brackets,
Orders, Division & Multiplication,
Addition & Subtraction)

Cheat Sheet
addq Src,
subqg Src,
imulq Src,
salq Src,
sarq Src,

shrq Src,
xorq Src,
andq Src,
orq Src,

Dest=Dest+Src
Dest=Dest-Src
Dest=Dest*Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest >> Src
Dest=Dest * Src
Dest=Dest & Src
Dest=Dest | Src

Northeastern
University

40

Exercise

* If | have the expression * mov(q a, %rax
movq b, %rbx
c = b*(b+a) addqg %rbx, %rax
imulg %rbx

movq %rax, C
e How should | write this in

ASM?

IMULQ has a variant with one

Cheat Sheet
addq Src, Dest Dest=Dest+Src
subqg Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src

operand which multiplies by
whatever is in %rax and stores
result in %rax

imulq has three forms

shrq Src, Dest Dest=Dest >> Src .
5 imulg X:rax=X *rax

xorq Src, Dest Dest=Dest * Src . N
andq Src, Dest Dest=Dest & Src * imulgXY:Y=X*Y
orqg Src, Dest Dest=Dest | Src e imulgXYZ:Z=X*Y

Northeastern
University

Some common operations with one-operand

* incqg Dest Dest = Dest + 1
* decq Dest Dest = Dest -1
* negq Dest Dest = -Dest

notq Dest Dest = “Dest

Northeastern
University

More Anatomy of Assembly Programs

Northeastern
University

Assembly output of hello.c

e Lines that start with “.” are
compiler directives.

e This tells the assembler
something about the program

e .textis where the actual code
starts.

Lines that end with “:” are labels
e Useful for control flow

* Lines that start with . and end
with : are usually temporary
locals generated by the compiler.

Reminder that lines that start with
% are registers

(.cfi stands for call frame
information)

Northeastern
University

main:

BB#0:
.Ltmp2:

.Ltmp3:

.Ltmp4:

.Ltmp5:

.L.str:

.file
.text
.globl
.align
.type

.cfi_sta
pushq
.cfi_def

.cfi_off
movq

.cfi_def
subq
leaq
movl
callq
movl
movl
movl
addq
popq
ret

.size
.cfi_end

.type
.section

.asciz

.size

.ident
.section

"hello.c"

main
16, 0x90
main,@function
@main
rtproc

$rbp
_cfa_offset 16

set %rbp, -16
$rsp, %rbp

_cfa_register $%rbp

$16, %rsp

Jasty,; Sxdi

$0, -4(%rbp)

puts

$0, %ecx

$eax, -8(%rbp) # 4-byte Spill
$ecx, %eax

$16, %rsp

$rbp

main, .Ltmp5-main
proc

.L.str,@object # @.str
.rodata.strl.1l,"aMsS",@progbits,1

"Hello Computer Systems Fall 2022"
L.8txr, 33

"clang version 3.4.2 (tags/RELEASE_34/dot2-final)"

".note.GNU-stack","",@progbits

44

https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for
https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for

Where to Learn more?

* https://diveintosystems.org/

e Intel® 64 and IA-32 Architectures Software Developer Manuals

Intel® 64 and |A-32 architectures software developer's manual combined This document contains the following:
volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

Volume 1: Describes the architecture and programming
environment of processors supporting I1A-32 and Intel® 64
architectures.

Volume 2: Includes the full instruction set reference, A-Z.
Describes the format of the instruction and provides reference
pages for instructions.

Volume 3: Includes the full system programming guide, parts
1, 2, 3, and 4. Describes the operating-system support
environment of Intel® 64 and |A-32 architectures, including:
memory management, protection, task management, interrupt
and exception handling, multi-processor support, thermal and
power management features, debugging, performance
monitoring, system management mode, virtual machine
extensions (VMX) instructions, Intel® Virtualization Technology
(Intel® VT), and Intel® Software Guard Extensions (Intel®
SGX).

Volume 4: Describes the model-specific registers of
processors supporting IA-32 and Intel® 64 architectures.

Northeastern 45
University

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

(Volume 2 Instruction set reference)

Bookmarks >

E- W le B

> [d Volume 1:Basic
Architecture

v [] Volume 2 (2A, 2B, 2C &
2D):Instruction Set
Reference, A-Z

> [d Chapter 1 About This
Manual

> m Chapter 2 Instruction
Format

v [] Chapter 3 Instruction
Set Reference, A-L

> [d 3.1Interpreting the
Instruction
Reference Pages

> [] 3.2 Instructions
(A-L)

N | Chantar A Inctriirtinn

Northeastern
University

INC—Increment by 1

Opcode Instruction Op/ |64-Bit Compat/ |Description
En [Mode Leg Mode
FE/D INC /m8 M Valid Valid Increment r/m byte by 1.
REX +FE/O INC r/m8 M Valid N.E Increment r/m byte by 1.
FF/0 INC /m16 M Valid Valid Increment r/m word by 1.
FF/0 INC /m32 M Valid Valid Increment r/m doubleword by 1.
REXW +FF /0 INC r/m64 M Valid N.E Increment r/m quadword by 1.
40+ rw INC r16 0 [NE Valid Increment word register by 1.
40+ rd INC r32 0 N.E. Valid Increment doubleword register by 1.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.
**40H through 47H are REX prefixes in 64-bit mode.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (r, w) NA NA NA
0 opcode * rd (r, w) NA NA NA
Description

Adds 1 to the destination onerand

- while nreservina the state of the CF flan. The destination onerand can he a

So far we looked at moving data and
doing some operations on data

What’s missing?

Northeastern
University

Comparisons

Northeastern
University

Compare operands: cmp , jmp , set

e Often we want to compare the values of two registers
* Think if, then, else constructs or loop exit or switch conditions

* cmpqg Src2, Srcl

e cmpq Src2, Srcl is equivalent to computing Src1-Src2
(but there is no destination register)

* Now we need a method to use the result of compare, but there is
not destination to find the result.

What do we do?

Northeastern
University

Remember condition codes?

 Condition codes - some status information

CPU

PC

Registers

Addresses

Condition
Codes

Data

g

<

Instructions

>

Northeastern
University

Memory

Code
Data
Stack

50

FLAGS registers

CF (carry flag)
* Setto 1 when there is a carry out in an unsigned arithmetic operation
* Otherwise setto O

ZF (zero flag)
e Set to 1 when the result of an arithmetic operation is zero
* Otherwise setto 0

SF (signed flag)
 Setto 1 when there is a carry out in a signed arithmetic operation
* Otherwise setto 0

OF (overflow flag)
e Set to 1 when signed arithmetic operations overflow
e Otherwise setto 0O

Northeastern
University

Conditional Branches (jumps)

Using the result from cmp => jmp instructions

* |n order to read result from cmp, we use jmp to a label

Instruction Description
jmp Label Jump to label
jmp *Operand Jump to specified location
je/ jz Label Jump if equal/zero
jne / jnz Label Jump if not equal/nonzero
js Label Jump if negative
jns Label Jump if nonnegative
jg/ jnle Label Jump if greater (signed)
jge / jnl Label Jump if greater or equal (signed)
jl/ jnge Label Jump if less (signed)
jle/ jng Label Jump if less or equal
ja/ jnbe Label Jump if above (unsigned)
jae / jnb Label Jump if above or equal (unsigned)
jb / jnae Label Jump if below (unsigned)
jbe / jna Label Jump if below or equal (unsigned)

Northeastern
University

65

Jump instructions

| Typically used after a compare

Condition Description
jmp 1 unconditional
je ZF jump if equal to 0
jne ~ZF jump if not equal to 0
js SF Negative
jns ~SF non-negative
ig ~(SFAOF) & ~ZF Greater (Signed)
jge ~(SF*OF) Greater or Equal
jl (SF*OF) Less (Signed)
jle (SF A OF) | ZF Less or Equal
ja ~CF & ~ZF Above (unsigned)
jb CF Below (unsigned)

Northeastern
University

66

Conditional Branch | if-else

* long absoluteDifference (long x, long y) { Take a moment to think about the ASM code

long result;
: * absoluteDifference:
if (x>y)
result = x-y; cmpq %rsi, %rdi
jle .else
else mov(q %rdi, %rax
} subq %rsi, %rax
ret
.else:
Some reminders:
%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value
cmpq src2, src1 = src1 — src2 and sets flags
jle x = jump to x if less than or equal
Northeastern 67

University

Code Exercise
(Take a moment to think what this assembly does)

mov(q S0, %rax
mystery:
incq %rax

cmpq S5, %rax
jl mystery

Northeastern
University

Code Exercise | Annotated (while loop example)

mov(q

mystery:
incq
cmpq
jl

Northeastern
University

S0, %rax

%rax
S5, %rax
mystery

e Move the value 0 into %rax
(temp = 0)

* Increment %rax
(temp =temp + 1,;)
* Compare %rax with 5

* |If %rax is smaller than 5 then
jump to ‘mystery’
If not then
proceed

Code Exercise | Annotated (while loop example)

e Move the value 0 into %rax

movq $0, %rax (temp =0)
mystery: e Label of a location
incq %rax

* Increment %rax

cmpg S5, %rax (temp = temp + 1;)

jl mystery
* Compare %rax with 5

* |If %rax is smaller than 5 then
jump to ‘mystery’
If not then
proceed

Equivalent C Code
long temp = 0;
do {

temp =temp + 1;

}
while(temp < 5);

Northeastern
University

