
NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter
Desnoyers’ lecture slides for the same course.

CPU Architectures and Assembly Languages

Agenda

1. Overview - Architecture and Assembly
2. The x86 32-bit architecture and its instruction set (Complex

instruction set computer; CISC)
3. The x86-64 architectures and its instruction set (CISC)
4. The ARM Cortex-A and Cortex-M and their instruction sets

(Reduced instruction set computer; RISC)

Computer Organization

What is Computer Architecture?

● Defines the design and organization of a processor (CPU, GPU, etc.)
● Specifies how the processor executes instructions, handles data, and

interacts with memory and I/O

What are Instructions?

● Binary-encoded operations the processor understands directly.
● Tell the CPU what action to perform
● Form the Instruction Set Architecture (ISA), the “API” between hardware

and software

What is Assembly Language?

● A human-readable representation of machine instructions
● Uses mnemonics (e.g., ADD, MOV, JMP) instead of raw binary opcodes
● Provides a low-level programming interface closely tied to the CPU’s ISA
● Still requires an assembler to convert into machine code

CPU

OS

Applications

Interface/API: Instructions

Interface/API: System calls and other
POSIX interfaces

The CPU provides an interface to software in the form of its
instruction set architecture (ISA)

…

…

CPU and RAM (Main Memory)

CPU does the actual computation by executing instructions
RAM holds the data and instructions while the computer is
running

View as an assembly programmer

● Register - where we store data (heavily used data)

● PC - gives us address of next instruction

● Condition codes - some status information

● Memory – where the program (code) resides and data is stored

Assembly Operations (i.e. Our instruction set)

● Things we can do with assembly (and this is about it!)
○ Transfer data between memory and register

■ Load data from memory to register

■ Store register data back into memory

○ Perform arithmetic/logical operations on registers and memory

○ Transfer Control

■ Jumps

■ Branches (conditional statements)

Recall the C toolchain pipeline

• All C programs go through this transformation of C --> Assembly -->
Machine Code (Instructions)

Recall the C toolchain pipeline

• All C programs go through this transformation of C --> Assembly -->
Machine Code (Instructions)

Disassembly

Disassemble:
objdump

So we have gone back in time in a way!

So we have gone back in time!

Look at all of these assembly languages
over 60 years old!

This was the family of languages folks
programmed in.

C was created by Dennis Ritchie at Bell Labs in the early 1970s as an augmented version of Ken
Thompson's B.[

https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/The_C_Programming_Language#cite_note-3

Modern Day Assembly is of course still in use
● Still used in games

(console games specifically)
○ In hot loops where code must

run fast

● Still used on embedded systems

● Useful for debugging any
compiled language

● Useful for even non-compiled or
Just-In-Time Compiled languages

○ Python has its own bytecode
○ Java’s bytecode (which is

eventually compiled) is
assembly-like

● Being used on the web
○ webassembly

● Still relevant after 60+ years!

https://en.wikipedia.org/wiki/WebAssembly

Aside: Java(left) and Python(right) bytecode examples

How are programs created?

● Compile a program to an executable
○ gcc main.c -o program

● Compile a program to assembly
○ gcc main.c -S -o main.s

● Compile a program to an object file (.o file)
○ gcc -c main.c

● Linker (A program called ld) then takes all of your object files and
makes a binary executable.

Focus on this step today -- pretend C does not exist

● Compile a program to an executable
○ gcc main.c -o program

● Compile a program to assembly
○ gcc main.c -S -o main.s

● Compile a program to an object file (.o file)
○ gcc -c main.c

● Linker (A program called ld) then takes all of your object files and
makes a binary executable.

Layers of Abstraction

● As a C programmer you worry about C code
○ You work with variables, do some memory management using malloc and

free, etc.

● As an assembly programmer, you worry about assembly
○ You also maintain the registers, condition codes, and memory

● As a hardware engineer (programmer)
○ You worry about cache levels, layout, clocks, etc.

Assembly Abstraction layer

● With Assembly, we lose some of the information we have in C

● In higher-order languages we have many different data types which
help protect us from errors.

○ For example: int, long, boolean, char, string, float, double, complex, …
○ In C there are custom data types (structs for example)
○ Type systems help us avoid inconsistencies in how we pass data around.

● In Assembly we lose unsigned/signed information as well!
○ However, we do have two data types
○ Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes)

[byte = 8 bits]

Intel and x86 Instruction set

● In order to program these chips, there is a specific instruction set we will
use

● Popularized by Intel

● Other companies have contributed.
○ AMD has been the main competitor

● (AMD was first to really nail 64 bit architecture around 2001)

● Intel followed up a few years later (2004)

● Intel remains the dominant architecture

● x86 is a CISC architecture
○ (CISC pronounced /ˈsɪsk/)

https://en.wikipedia.org/wiki/X86

CISC versus RISC

● Complex Instruction Set Computer
(CISC)

○ Instructions do more per
operation

○ Architecture understands a
series of operations

● Performance can be nearly as fast or
equal to RISC

● Reduced Instruction Set Computer
(RISC)

○ Instructions are very small
○ Performance is extremely fast
○ Generally a simpler architecture

x86 Architecture

Intel released a
series of processors
in the late 1970s
and 1980s whose
names all ended
with “86”.

https://en.wikipedia.org/wiki/X86

Intel Data Types

There are 5 integer data types:

Byte – 8 bits.
Word – 2 bytes; 16 bits.
Dword, Doubleword – 4 bytes; 32 bits.
Quadword – 64 bits.
Double quadword – 128 bits.
Single precision - 32 bits.
Double precision - 64 bits.

Sizes of data types (C to assembly)

C Declaration Intel Data Type Assembly-code suffix Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

*Size always depends on architecture

Endianness
Ordering of Bytes in Memory or Transmission

● Little Endian (Intel, ARM)
Least significant byte has lowest address
Dword address: 0x0
Value: 0x78563412

● Big Endian
Least significant byte has highest address
Dword address: 0x0
Value: 0x12345678

0x12Address 0

0x34Address 1

0x56Address 2

0x78Address 3

Base Registers

There are
● SIX 32-bit “general-purpose” registers,
● One 32-bit EFLAGS register,
● One 32-bit instruction pointer register (eip), and
● Other special-purpose registers.

The General-Purpose Registers

● 6 general-purpose
registers

● esp is the stack pointer
● ebp is the base pointer
● esi and edi are source and

destination index registers
for array and string
operations

The General-Purpose Registers

● The registers eax, ebx, ecx,
and edx may be accessed as
32-bit, 16-bit, or 8-bit
registers.

● The other four registers can
be accessed as 32-bit or
16-bit.

EFLAGS Register

The various bits of the 32-bit EFLAGS register are set (1) or reset/clear (0)
according to the results of certain operations.

We will be interested in, at most, the bits

CF – carry flag
PF – parity flag
ZF – zero flag
SF – sign flag

Instruction Pointer (EIP)

Finally, there is the EIP register, which is the instruction pointer (program
counter). Register EIP holds the address of the next instruction to be
executed.

Program Counter and Memory Addresses

Code
Addr 0x00A0 mov ..
Addr 0x00A4 mov ..
Addr 0x00A8 add ..

Data
Addr 0x00F0 Var X
Addr 0x00F4 Var Y

Registers:
eax, ebx, ecx, edx, …

Memory Addresses

● When programming applications we are looking at
virtual addresses in our assembly when we see
addresses.

● This makes us think of the program as a large byte
array.
○ The operating system takes care of managing

this for us with virtual memory.
○ This is one of the key jobs of the operating

system

Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

Instructions

Each instruction is of the form

label: mnemonic operand1, operand2, operand3
The label is optional. Operand 1 is the source, operand 2 is the
destination in AT&T syntax

The number of operands is 0, 1, 2, or 3, depending on the mnemonic .

Each operand is either
● An immediate value,
● A register, or
● A memory address.

Source and Destination Operands

Each operand is either a source operand or a destination operand.

A source operand, in general, may be
● An immediate value,
● A register, or
● A memory address.

A destination operand, in general, may be
● A register, or
● A memory address.

Instructions

hlt – 0 operands
halts the central processing unit (CPU) until the next external interrupt is
fired

inc – 1 operand; inc <reg>, inc <mem>

add – 2 operands; add <reg>,<reg>

imul – 1, 2, or 3 operands; imul <reg32>,<reg32>,<con>

In Intel syntax the first operand is the destination

AT&T Syntax Assembly and Disassembly

Machine instructions generally fall into three categories: data movement,
arithmetic/logic, and control-flow.

<reg32> Any 32-bit register (%eax, %ebx, %ecx, %edx, %esi, %edi, %esp, or %ebp)
<reg16> Any 16-bit register (%ax, %bx, %cx, or %dx)
<reg8> Any 8-bit register (%ah, %bh, %ch, %dh, %al, %bl, %cl, or %dl)
<reg> Any register
<mem> A memory address (e.g., (%eax) or (%eax,%ebx,1))
<con32> Any 32-bit immediate
<con16> Any 16-bit immediate
<con8> Any 8-bit immediate
<con> Any 8-, 16-, or 32-bit immediate

Key Points of AT&T Syntax Assembly and Disassembly

● instruction source, destination
○ movl %eax, %ebx # move contents of EAX into EBX

● Register Prefix %. All registers start with %
○ %eax, %ebx, %rsp, %rdi

● Immediate Values with $. Immediate constants (literal values) use
the $ prefix.
○ movl $5, %eax # put the constant 5 into EAX

● Memory Operands. Memory references are written in parentheses.
○ disp(base, index, scale)
○ movl 8(%ebp), %eax # load value at [EBP+8] into EAX

Addressing Memory

Move from source (operand 1) to destination (operand 2)

mov (%ebx), %eax (read as MOVE FROM x to y) Load 4 bytes from the
memory address in EBX into EAX.

mov -4(%esi), %eax Move 4 bytes at memory address ESI - 4 into EAX.

mov %cl, (%esi,%eax,1) Move the contents of CL into the byte at address
ESI+EAX*1.

mov (%esi,%ebx,4), %edx Move the 4 bytes of data at address ESI+4*EBX
into EDX.

Addressing Memory

The size prefixes b, w, l, q (x86-64) indicate sizes of 1, 2, 4, and 8 (x86-64) bytes
respectively.

mov $2, (%ebx) isn’t this ambiguous? We can have a default.

movb $2, (%ebx) Move 2 into the single byte at the address stored in EBX.

movw $2, (%ebx) Move the 16-bit integer representation of 2 into the 2
bytes starting at the address in EBX.

movl $2, (%ebx) Move the 32-bit integer representation of 2 into the 4 bytes
starting at the address in EBX.

Data Movement Instructions

mov — Move

Syntax
mov <reg>, <reg>
mov <reg>, <mem>
mov <mem>, <reg>
mov <con>, <reg>
mov <con>, <mem>

Examples
mov %ebx, %eax — copy the value in EBX into EAX
movb $5, var(,1) — store the value 5 into the byte at location var

Data Movement Instructions

push — Push on stack; decrements ESP by 4, then places the operand at the
location ESP points to.

Syntax
push <reg32>
push <mem>
push <con32>

Examples
push %eax — push eax on the stack

Data Movement Instructions

pop — Pop from stack

Syntax
pop <reg32>
pop <mem>

Examples
pop %edi — pop the top element of the stack into EDI.
pop (%ebx) — pop the top element of the stack into memory at the four bytes
starting at location EBX.

Data Movement Instructions

lea — Load effective address; used for quick calculation

Syntax
lea <mem>, <reg32>

Examples
lea (%ebx,%esi,8), %edi — the quantity EBX+8*ESI is placed in EDI.

Arithmetic and Logic Instructions

add $10, %eax — EAX is set to EAX + 10
addb $10, (%eax) — add 10 to the single byte stored at memory address stored
in EAX

sub %ah, %al — AL is set to AL - AH
sub $216, %eax — subtract 216 from the value stored in EAX

dec %eax — subtract one from the contents of EAX

imul (%ebx), %eax — multiply the contents of EAX by the 32-bit contents of the
memory at location EBX. Store the result in EAX.

shr %cl, %ebx — Store in EBX the floor of result of dividing the value of EBX by
2n where n is the value in CL.

Control Flow Instructions

jmp — Jump

Transfers program control flow to the instruction at the memory location
indicated by the operand.

Syntax
jmp <label> # direct jump
jmp <reg32> # indirect jump

Example
jmp begin — Jump to the instruction labeled begin.

Control Flow Instructions

jcondition — Conditional jump

Syntax
je <label> (jump when equal)
jne <label> (jump when not equal)
jz <label> (jump when last result was zero)
jg <label> (jump when greater than)
jge <label> (jump when greater than or equal to)
jl <label> (jump when less than)
jle <label> (jump when less than or equal to)

Example

cmp %ebx, %eax
jle done

Control Flow Instructions

cmp — Compare

Syntax
cmp <reg>, <reg>
cmp <mem>, <reg>
cmp <reg>, <mem>
cmp <con>, <reg>

Example
cmpb $10, (%ebx)
jeq loop

If the byte stored at the memory location in EBX is equal to the integer constant 10,
jump to the location labeled loop.

Control Flow Instructions

call — Subroutine call

The call instruction first pushes the current code location onto the
hardware supported stack in memory, and then performs an
unconditional jump to the code location indicated by the label
operand. Unlike the simple jump instructions, the call instruction saves
the location to return to when the subroutine completes.

Syntax
call <label>
call <reg32>
Call <mem>

Control Flow Instructions

ret — Subroutine return

The ret instruction implements a subroutine return mechanism. This
instruction pops a code location off the hardware supported in-memory
stack to the program counter.

Syntax
ret

The Run-time Stack

The run-time stack supports procedure calls and the passing of
parameters between procedures.

The stack is located in memory.

The stack grows towards low memory.

When we push a value, esp is decremented.

When we pop a value, esp is incremented.

Stack Instructions

enter — Create a function frame

Equivalent to:

push %ebp
mov %esp, %ebp
Sub #imm, %esp

Stack Instructions

leave — Releases the function frame set up by an earlier ENTER instruction.

Equivalent to:

mov %ebp, %esp
pop %ebp

xv6 bootasm.S

https://github.com/mit-pdos/xv6-public/blob/mast
er/bootasm.S

x86-64/amd64 architecture

Registers on x86 and x86-64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

Moving data around | mov instruction

● (Remember moving data is all machines do!)

● movq - moves a quad word (8 bytes) of data

● movd - move a double word (4 bytes) of data

movq Source, Dest

● Source or Dest Operands can have different addressing modes
○ Immediate - some memory address $0x333 or $-900
○ Memory - (%rax) dereferences gets the value in the register and use it as

address
○ Register - Just %rax

Address:
0xFFFFFFFF
…
0x00000000

Registers:
rax, rbx, rcx rdx, …

Full List of Memory Addressing Modes

Mode Example

Global Symbol MOVQ x, %rax

Immediate MOVQ $56, %rax

Register MOVQ %rbx, %rax

Indirect MOVQ (%rsp), %rax

Base-Relative MOVQ -8(%rbp), %rax

Offset-Scaled-Base-Relative MOVQ -16(%rbx, %rcx, 8), %rax
 (base, index, scale)

Copy data from
addr pointed by
rbp minus 8 to

rax

(rbx + rcx * 8) - 16

C equivalent of movq instructions | movq src, dest

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that location to -150 (*p =
-150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that location to value stored
in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location (%rdx = *p)

What does each movq do?

C equivalent of movq instructions | movq src, dest

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that location to -150 (*p =
-150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that location to value stored
in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location (%rdx = *p)

Some registers are reserved for special use (More to come)

● This can be dependent on the instruction being used

● %rsp - keeps track of where the stack is for example

● %rdi - the first program argument in a function

● %rsi - the second argument in a function

● %rdx - the third argument of a function

● %rax – return value of a function

These conventions
are especially useful
for functions known
as system calls. https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/

Some registers are reserved for special use (More to come)

● This can be dependent on the instruction being used

● %rsp - keeps track of where the stack is for example

● %rdi - the first program argument in a function

● %rsi - the second argument in a function

● %rdx - the third argument of a function

● %rax – return value of a function

● %rip - the Program Counter

Some registers are reserved for special use

● This can be dependent on the instruction being used

● %rsp - keeps track of where the stack is for example

● %rdi - the first program argument in a function

● %rsi - the second argument in a function

● %rdx - the third argument of a function

● %rax – return value of a function

● %rip - the Program Counter

● %r8-%r15 - These eight registers are general purpose registers

X86 Linux Calling Convention (cdecl)

Caller (in this order)
● Pushes arguments onto the stack (in right to left order)
● Execute the call instruction (pushes address of instruction

after call, then moves dest to %eip)
Callee
● Pushes previous frame pointer onto stack (%ebp)
● Setup new frame pointer (mov %esp, %ebp)
● Creates space on stack for local variables (sub #imm, %esp)
● Ensures that stack is consistent on return
● Return value in %eax register

amd64 Linux Calling Convention

Caller
● Use registers to pass arguments to callee. Register order

(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) %rdi, %rsi, %rdx, %rcx,
%r8, %r9, ... (use stack for more arguments)

x86 vs. x86-64 (code/ladd)

/*
This program has an integer overflow vulnerability.
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

long long ladd(long long *xp, long long y)
{
 long long t = *xp + y;
 return t;
}

gcc -Wall -m32 -O2 main.c -o ladd

main.c

gcc -Wall -O2 main.c -o ladd64

int main(int argc, char *argv[])
{
 long long a = 0;
 long long b = 0;

 if (argc != 3)
 {
 printf("Usage: ladd a b\n");
 return 0;
 }

 printf("The sizeof(long long) is %d\n", sizeof(long long));

 a = atoll(argv[1]);
 b = atoll(argv[2]);

 printf("%lld + %lld = %lld\n", a, b, ladd(&a, b));
}

x86 vs. x86-64 (code/ladd)

00000640 <ladd>:
 640: 8b 44 24 04 mov 0x4(%esp),%eax
 644: 8b 50 04 mov 0x4(%eax),%edx
 647: 8b 00 mov (%eax),%eax
 649: 03 44 24 08 add 0x8(%esp),%eax
 64d: 13 54 24 0c adc 0xc(%esp),%edx
 651: c3 ret

x86-64

0000000000000780 <ladd>:
 780: 48 8b 07 mov (%rdi),%rax
 783: 48 01 f0 add %rsi,%rax
 786: c3 retq

x86

objdump -d ladd
objdump -d ladd64

ARM Cortex-A/M Architecture

Cortex-A 64 bit

Cortex-M 32 bit

A little example

What does this function do?
(take a few moments to think)

● void mystery(<type> a, <type> b) {

????

}

● mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Cheat Sheet

Swap of long

● void mystery(long *a, long *b) {
long t0 = *a;
long t1 = *b;
*a = t1;
*b = t0;

}

● mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Cheat Sheet

More assembly instructions

● addq Src, Dest Dest=Dest+Src
subq Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shlq Src, Dest Dest=Dest << Src
shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ^ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

● Note on order:
We use AT&T syntax: op Src, Dest
Intel syntax: op Dest, Src

Value 1 Value 2

x 0110 0011 1001 0101

x>>4 (arithmetic) 0000 0110 1111 1001

x>>4 (logical) 0000 0110 0000 1001

Exercise

● If I have the expression

c = b*(b+a)

● How should I write this is ASM?

Cheat Sheet

Exercise

● If I have the expression

c = b*(b+a)

● How should I write this is ASM?

● movq a, %rax
movq b, %rbx
addq %rbx, %rax
imulq %rbx
movq %rax, c

IMULQ has a variant with one
operand which multiplies by
whatever is in %rax and stores
result in %rax

imulq has three forms
• imulq X : rax = X * rax
• imulq X Y : Y = X * Y
• imulq X Y Z : Z = X * Y

Cheat Sheet

Some common operations with one-operand

● incq Dest Dest = Dest + 1

● decq Dest Dest = Dest - 1

● negq Dest Dest = -Dest

● notq Dest Dest = ~Dest

More Anatomy of Assembly Programs

Assembly output of hello.c

● Lines that start with “.” are compiler
directives.

○ This tells the assembler something about
the program

○ .text is where the actual code starts.

● Lines that end with “:” are labels
○ Useful for control flow
○ Lines that start with . and end with : are

usually temporary locals generated by the
compiler.

● Reminder that lines that start with % are
registers

● (.cfi stands for call frame information)

https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for

Where to Learn more?

● https://diveintosystems.org/

● Intel® 64 and IA-32 Architectures Software Developer Manuals

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

(Volume 2 Instruction set reference)

Comparisons

Compare operands: cmp_, jmp_, set__

● Often we want to compare the values of two registers
○ Think if, then, else constructs or loop exit or switch conditions

● cmpq Src2, Src1
○ cmpq Src2, Src1 is equivalent to computing Src1-Src2

(but there is no destination register)

● Now we need a method to use the result of compare, but there is not
destination to find the result.

What do we do?

Remember condition codes?

● Register - where we store data (heavily used data)

● PC - gives us address of next instruction

● Condition codes - some status information

● Memory – where the program (code) resides and data is stored

FLAGS registers

● CF (carry flag)
○ Set to 1 when there is a carry out in an unsigned arithmetic operation
○ Otherwise set to 0

● ZF (zero flag)
○ Set to 1 when the result of an arithmetic operation is zero
○ Otherwise set to 0

● SF (signed flag)
○ Set to 1 when there is a carry out in a signed arithmetic operation
○ Otherwise set to 0

● OF (overflow flag)
○ Set to 1 when signed arithmetic operations overflow
○ Otherwise set to 0

Conditional Branches (jumps)

Using the result from cmp => jmp instructions

● In order to read result from cmp, we use jmp to a label

Jump instructions | Typically used after a compare

Condition Description

jmp 1 unconditional

je ZF jump if equal to 0

jne ~ZF jump if not equal to 0

js SF Negative

jns ~SF non-negative

jg ~(SF^OF) & ~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal

jl (SF^OF) Less (Signed)

jle (SF ^ OF) | ZF Less or Equal

ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)

Conditional Branch | if-else

● long absoluteDifference (long x, long y) {
long result;
if (x > y)

result = x-y;
else

result = y-x;
}

Take a moment to think about the ASM
code

● absoluteDifference:

cmpq %rsi, %rdi
jle .else
movq %rdi, %rax
subq %rsi, %rax
ret

.else:
movq %rsi, %rax
subq %rdi, %rax
ret

Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value
cmpq src2, src1 = src1 – src2 and sets flags
jle x = jump to x if less than or equal

Code Exercise
(Take a moment to think what this assembly does)

 movq $0, %rax
mystery:
 incq %rax
 cmpq $5, %rax
 jl mystery

Code Exercise | Annotated (while loop example)

 movq $0, %rax
mystery:
 incq %rax
 cmpq $5, %rax
 jl mystery

● Move the value 0 into %rax (temp = 0)

● Increment %rax
(temp = temp + 1;)

● Compare %rax with 5

● If %rax is smaller than 5 then
 jump to ‘mystery’
If not then
 proceed

Code Exercise | Annotated (while loop example)

 movq $0, %rax
mystery:
 incq %rax
 cmpq $5, %rax
 jl mystery

● Move the value 0 into %rax (temp = 0)

● Label of a location

● Increment %rax
(temp = temp + 1;)

● Compare %rax with 5

● If %rax is smaller than 5 then
 jump to ‘mystery’
If not then
 proceedlong temp = 0;

do {
temp = temp + 1;

 }
while(temp < 5);

Equivalent C Code

