
Memory, stack, and recursion

Week 3

CS 3650 Computer Systems – Spring 2026

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Memory on our machines

• The memory in our machines stores data so we can recall it later
• This occurs at several different levels

• Networked drive (or cloud storage)
• Hard drive
• Dynamic memory
• Cache

• For now, we can think of memory as a giant linear array.

2

Linear array of memory

• Each ‘box’ here we will say is 1 byte of memory
• (1 byte = 8 bits on most systems)

• Depending on the data we store,
we will need 1 byte, 2 bytes, 4 bytes, etc.
of memory

3

Linear array of memory

• Visually I have organized memory
in a grid, but memory is really
a linear array as depicted below.
• There is one address after the other

4

Address:
1

Address:
2

Address:
3

Address:
4

Address:
5

Linear array of memory

• Visually I have organized memory
in a grid, but memory is really
a linear array as depicted below.
• There is one address after the other
• Because these addresses grow large, typically we represent them in

hexadecimal (16-base number system: a digit can be 0-9 and A-F)
• (https://www.rapidtables.com/convert/number/hex-to-decimal.html)

5

Address:
0x1

Address:
0x2

Address:
0x3

Address:
0x4

Address:
0x5

https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html

Remember: “Everything is a number”

6

Data Type Suffix Bytes Range (unsigned)
char b 1 0 to 255 (=2^8)
short int w 2 0 to 65,535 (=2^16)
int l 4 0 to 4,294,967,295 (=2^32)

long int q 8
0 to 18,446,744,073,709,551,615
(=2^64)

Addressing memory

7

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

● Address granularity: bytes
● Suppose we are looking at a chunk of

memory
● First address we see: 0x41F00

(in hexadecimal)
● This diagram: each row shows 8 bytes

(aka one quadword = 64 bits)

Addressing memory

8

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

mov $0x41F08, %rax 0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

(%rax)

We move the address 0x41F08 into rax

(%rax) now points to the contents of the
corresponding chunk of memory

Addressing memory

9

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

Offset addressing:

● We can point to addresses by
adjusting the pointer register by an
offset

(%rax)

Addressing memory

10

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

Offset addressing

Where does 8(%rax) point to?

8(%rax)

(%rax)

Addressing memory

11

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

8(%rax)
16(%rax)

(%rax)
Offset addressing

Where does 8(%rax) point to?
Where does 16(%rax) point to?

Addressing memory

12

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

Offset addressing

20(%rax)

8(%rax)
16(%rax)

(%rax)
Offset addressing

Where does 8(%rax) point to?
Where does 16(%rax) point to?
Where does 20(%rax) point to?

Addressing memory

13

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

-8(%rax)

(%rax)

20(%rax)

8(%rax)
16(%rax)

Offset addressingOffset addressing

Where does 8(%rax) point to?
Where does 16(%rax) point to?
Where does 20(%rax) point to?
Where does -8(%rax) point to?

Addressing memory

14

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

-4(%rax)(%rax)

-8(%rax)

20(%rax)

8(%rax)
16(%rax)

Offset addressingOffset addressing

Where does 8(%rax) point to?
Where does 16(%rax) point to?
Where does 20(%rax) point to?
Where does -8(%rax) point to?
Where does -4(%rax) point to?

Addressing memory

15

00 01 02 03 04 05 06 07

08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

mov $0x1020304050607080, (%rax)

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

(%rax)

What does this look like in memory?

Addressing memory

16

00 01 02 03 04 05 06 07

10 20 30 40 50 60 70 80

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

mov $0x1020304050607080, (%rax)

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What does this look like in memory?

Like this?

(%rax)

Addressing memory

17

00 01 02 03 04 05 06 07

10 20 30 40 50 60 70 80

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

mov $0x1020304050607080, (%rax)

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What does this look like in memory?

Like this? NO

(%rax)

Addressing memory

18

00 01 02 03 04 05 06 07

10 20 30 40 50 60 70 80

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

mov $0x1020304050607080, (%rax)

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What does this look like in memory?

Like this? NO

→ x86 is little-endian: the less significant
bytes are stored at lesser addresses

(end byte of the number, 0x80, is little)

(%rax)

Addressing memory

19

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

mov $0x1020304050607080, (%rax)

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What does this look like in memory?

Like this.

(%rax)

Addressing memory

20

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

movq (%rax), %r10

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

Copies the contents of the address pointed
to by (%rax) to %r10

(%rax)

movq %rax, %r11

Copies the contents of %rax to %r11. Now
(%rax) and (%r11) point to the same
location.

Addressing memory

21

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

movl (%rax), %ebx

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What’s in %ebx?

(%rax)

How much we move is determined by
operand sizes / suffixes

Addressing memory

22

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

movl (%rax), %ebx

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What’s in %ebx?

0x50607080

(%rax)

Addressing memory

23

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

movw 4(%rax), %bx

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What’s in %bx?

(%rax)

Addressing memory

24

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

movw 4(%rax), %bx

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What’s in %bx?

0x3040

(%rax)

Addressing memory

25

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

movb 6(%rax), %bl

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What’s in %bl?

(%rax)

Addressing memory

26

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

movb 6(%rax), %bl

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What’s in %bl?

0x20

(%rax)

Addressing memory

27

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

add $8, %rax

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

Modifying %rax changes where it points

(%rax)

Addressing memory

28

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

add $8, %rax

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

Modifying %rax changes where it points

(%rax)

-8(%rax)

Addressing memory

29

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

10 11 12 13 14 15 16 17

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

add $8, %rax
movq $0x42, (%rax)

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

How does movq change the memory state?

(%rax)

-8(%rax)

Addressing memory

30

00 01 02 03 04 05 06 07

80 70 60 50 40 30 20 10

42 00 00 00 00 00 00 00

18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27

28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37

38 39 3A 3B 3C 3D 3E 3F

add $8, %rax
movq $0x42, (%rax)

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

Modifying %rax changes where it points

(%rax)

Addressing memory: full syntax

31

displacement(base, index, scale)

Mostly used for addressing arrays:

displacement: (immediate) offset / adjustment (e.g., -8, 8, 4, …)
base: (register) base pointer (%rax in previous examples)
index: (register) index of element
scale: (immediate) size of an element

ADDRESS = base + (index * scale) + displacement

Addressing memory: full syntax

32

displacement(base, index, scale)

Mostly used for addressing arrays:

displacement: (immediate) offset / adjustment (e.g., -8, 8, 4, …)
base: (register) base pointer (%rax in previous examples)
index: (register) index of element
scale: (immediate) size of an element

ADDRESS = base + (index * scale) + displacement

Note:
8(%rax) is equivalent to 8(%rax, 0, 0)

Addressing memory: full syntax (forloop.s on
Week 3 of Schedule)

33

01

02

03

04

05

06

07

08

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %r10

loop:
cmp $8, %rcx
jge loop_end

add (%rax, %rcx, 8), %r10
inc %rcx
jmp loop

loop_end:

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

...

...

What’s in %r10 after loop_end?

Procedures/Functions

Procedure Mechanisms

• Several things happen when calling a procedure
(i.e., function or method)
• Pass control

• Start executing from start of procedure
• Return back to where we called from

• Pass data
• Procedure arguments and the return value are passed

• Memory management
• Memory allocated in the procedure, and then deallocated on return

• x86-64 uses the minimum subset required

35

x86-64 Memory Space

• Our view of a program is a giant byte array

• However, it is segmented into different regions
• This separation is determined by

the Application Binary Interface (ABI)

• This is something typically chosen by the OS.

• We traverse our byte array as a stack

36

API = how you call it in
source code

e.g. you #include <stdio.h>
and call printf()

ABI = how that call actually
looks at the binary level

e.g. the compiled code puts
format in %rdi, sets up the
stack frame, aligns the stack,
and expects the return value
in %rax.

https://en.wikipedia.org/wiki/Application_binary_interface

x86-64 Memory Space

37

Literals

Top of stack

Bottom of
stack

Static Data

Heap

Stack

Our Program Memory Space is divided into several segments.
• Some parts of it are for long lived data (the heap)
• The other is for short-lived data (the stack)

typically used for functions and local variables.

Program Memory

Instructions

(Unallocated)

0

2N-1

Address

Addresses grow up

x86-64 stack

• There is a stack at the top of the memory
• Yes, the stack that you learned

in data structures course

• You can push and pop data

38

Literals

Top of stack

Bottom of
stack

Static Data

Heap

Stack

Instructions

(Unallocated)

Program Memory

0

2N-1

Address

x86-64 stack

39

Stack grows down
(But hopefully not into the
heap -- otherwise error!

0

2N-1

Address

Literals

Top of stack

Bottom of
stack

Static Data

Heap

Stack

Instructions

(Unallocated)

Program Memory

That means the top of our
stack is approaching
address 0

x86-64 stack

42

With a Stack data structure, we can perform two main operations

1. push data onto the stack (add information)
a. Our stack grows

a. Pushes data to top of the stack
b. Moves the stack pointer downward

2. pop data off of the stack (remove information)
a. Our stack shrinks

a. Pops data from the top of the stack
b. Moves the stack pointer upward

Literals

Top of stack

Bottom of
stack

Static Data

Heap

Stack

Instructions

(Unallocated)

Program Memory

0

2N-1

Address

x86-64 stack | PUSHQ Example

43

0

2N-1

Address

Literals

Bottom of stack

Static Data

Heap

Stack

Instructions

(Unallocated)

Program Memory

● PUSHQ Src
○ Fetch operand at src
○ decrement %rsp by 8 (Q bytes)
○ Write operand at address given by %rsp

Stack Pointer: %rsp
Always contains lowest
address in current stack frame

Base Pointer: %rbp
Always contains address of
top of current stack frame

x86-64 stack | PUSHQ Example

44

● PUSHQ Src
○ Fetch operand at src
○ decrement %rsp by 8 (Q bytes)
○ Write operand at address given by %rsp
○ %rbp is unchanged

src (-8)

Stack Pointer: %rsp
Always contains lowest
address in current stack frame

Base Pointer: %rbp
Always contains address of
top of current stack frame

0

2N-1

Address

Literals

Bottom of stack

Static Data

Heap

Stack

Instructions

(Unallocated)

Program Memory

x86-64 stack | POPQ Example

45

● POPQ Dest
○ Read value at address given by %rsp
○ Increment %rsp by 8 (Q bytes)
○ Store value at Dest
○ %rbp unchanged

Stack Pointer: %rsp
Always contains lowest
address

Garbage data

0

2N-1

Address

Literals

Bottom of stack

Static Data

Heap

Stack

Instructions

(Unallocated)

Program Memory

Base Pointer: %rbp
Always contains address of
top of current stack frame

The Process Stack

• Each process has a stack in memory that stores:
• Local variables
• Arguments to functions
• Return addresses from functions

• On x86:
• The stack grows downwards

• RSP (Stack Pointer) points to the bottom of the stack
(= newest data)

• RBP (Base Pointer) points to the base of the current frame

• Instructions like push, pop, call, ret, int, and iret all modify the stack

46

Creating and deleting stack frames for a function

47

void main(void) {
…
foo(x);
baz(y);

}

code, static
data, etc.

void foo(int a) {
…
bar(z

);
}

void bar(int b) {
…
baz(n

);
}

void baz(int c) {
…

}

Creating and deleting stack frames for a function

48

void main(void) {
…
foo(x);
baz(y);

}

code, static
data, etc.

void baz(int c) {
…

}

Creating and deleting stack frames for a function

49

void main(void) {
…
foo(x);
baz(y);

}

code, static
data, etc.

void foo(int a) {
…
bar(z

);
}

void bar(int b) {
…
baz(n

);
}

void baz(int c) {
…

}

Allocation and deallocation of stack frames
require changing %rbp and %rsp

RBP

RSPRBP

RSPRBP

RSPRBP

RSP

Creating a new stack frame for a function and
exiting
Create (enter) the new stack frame
push %rbp # push location of base pointer to stack
mov %rsp, %rbp # copies the value of the stack pointer

%rsp to the base pointer %rbp->%rsb and %rsp
now both point to the top of the stack

Do function here…

When function is done, remove (leave) stack frame
mov %rbp, %rsp # sets %rsp to %rbp
pop %rbp # pops the top of the stack into %rbp,

where we stored the previous value
from the push

50

RBP

RSPRBP

enter and leave

enter creates a stack frame
enter $0, $0 # is equivalent to

push %rbp
mov %rsp, %rbp

and can allocate space in the stack
enter $24, $0 # is equivalent to

push %rbp
mov %rsp, %rbp
sub $24, %rsp

the second arg indicates nesting level

51

RBP

RSPRBP

RSP

enter and leave

leave exits a stack frame: does the inverse of enter
leave # is equivalent to

mov %rbp, %rsp
pop %rbp

Recall,

mov %rbp, %rsp # sets %rsp to %rbp
pop %rbp # pops the top of the stack to %rbp,

where we stored the previous
value from enter

52

RBP

RSPRBP

RSP

Go to ASM Visualizer
Then goto slide #57

54

A “Design Recipe for Assembly”

1.Signature (C-ish)
2.Pseudocode (ditto)
3.Variable mappings (registers, stack offsets)
4.Skeleton
5.Fill in the blanks

57

I strongly recommend you to read
Nat Tuck’s Assembly Design Recipe in the reading list

1. Signature

• What are our arguments?
• What will we return?

58

long min(long a, long b)
min:

...

long factorial(long x)
factorial:

...

2. Pseudocode

• How do we compute the function?
• Thinking in directly in assembly is hard
• Translating pseudocode, on the other hand, is quite

straightforward
• C works pretty well

59

long factorial(long x)
factorial:

long res = 1;
while (x > 1) {
res = res * x;
x--;
}
return res;

3. Variable Mappings

• Need to decide where we store temporary values
• Arguments are given: %rdi, %rsi, %rdx, %rcx, %r8, %r9, then

the stack
• Do we keep variables in registers?

• Callee-save? %r12, %r13, %r14, %r15, %rbx
• Caller-save? %r10, %r11 + argument registers

• Do we use the stack?

60

long factorial(long x)
factorial:

x -> %r12
res -> %rax

Callee can freely
modify the

register

Callee must
restore the

original value
before exiting

4. Function Skeleton

61

label:
Prologue:
Set up stack frame.
Body:
Just say "TODO"
Epilogue:
Clean up stack frame.

Prologue:

● push callee-saves
● enter - allocate stack space

○ stack alignment!

Epilogue:

● leave - deallocate stack space
● Restore (pop) any pushed registers
● ret - return to call site

4. Function Skeleton

62

min:
Prologue:
push %r12 # Save callee-save regs.
push %r13
enter $24, $0 # Allocate / align stack
Body:

Just say "TODO"
Epilogue:
leave # Clean up stack frame.
pop %r13 # Restore saved regs.
pop %r12
ret # Return to call site

5. Complete the Body

• Translate your pseudocode into assembly - line by line
• Apply variable mappings

63

Variables, Temporaries, Assignment

• Each C variable maps to a register or a stack location
(by using enter)
• Temporary results go into registers
• Registers can be shared / reused - keep track carefully

64

long x = 5;
long y = x * 2 + 1;

With:
x in %r10
y in %rbx
Temporary for x * 2 is %rdx

Variables, Temporaries, Assignment

• Each C variable maps to a register or a stack location
(by using enter)
• Temporary results go into registers
• Registers can be shared / reused - keep track carefully

65

With:
x in %r10
y in %rbx
Temporary for x * 2 is %rdx

long x = 5;
mov $5, %r10

long y = x * 2 + 1;
mov %r10, %rdx
imulq $2, %rdx
add $1, %rdx
mov %rdx, %rbx

long x = 5;
long y = x * 2 + 1;

Variables, Temporaries, Assignment

• Each C variable maps to a register or a stack location
(by using enter)
• Temporary results go into registers
• Registers can be shared / reused - keep track carefully

66

With:
x in %r10
y in %rbx
Temporary for x * 2 is %rdx

long x = 5;
mov $5, %r10

long y = x * 2 + 1;
mov %r10, %rdx
imulq $2, %rdx
add $1, %rdx
mov %rdx, %rbx

long x = 5;
long y = x * 2 + 1;

If statements 1

67

// Case 1
if (x < y) {

y = 7;
}

Variables:

● x is -8(%rbp)
● y is -16(%rbp) or,

temporarily, %r10

If statements 1

68

// Case 1
if (x < y) {

y = 7;
}

if (x < y)
cmp can only take one indirect arg
mov -16(%rbp), %r10
cmp %r10, -8(%rbp)
cmp order backwards from C
condition reversed, skip block
unless cond
jge -> if (-8(%rbp) >= %r10)
then jump to else1
jge else1:

y = 7
movq $7, -16(%rbp)
need suffix to set size of "7"

else1:
...

Variables:

● x is -8(%rbp)
● y is -16(%rbp) or,

temporarily, %r10

If statements 1

69

// Case 1
if (x < y) {

y = 7;
}

if (x < y)
cmp can only take one indirect arg
mov -16(%rbp), %r10
cmp %r10, -8(%rbp)
cmp order backwards from C
condition reversed, skip block
unless cond
jge -> if (-8(%rbp) >= %r10)
then jump to else1
jge else1:

y = 7
movq $7, -16(%rbp)
need suffix to set size of "7"

else:
eelse1:

Variables:

● x is -8(%rbp)
● y is -16(%rbp) or,

temporarily, %r10

If statements 2

70

// Case 2
if (x < y) {

y = 7;
}
else {

y = 9;
}

Variables:

● x is -8(%rbp)
● y is -16(%rbp) or,

temporarily, %r10

If statements 2

71

// Case 2
if (x < y) {

y = 7;
}
else {

y = 9;
}

if (x < y)
mov -16(%rbp), %r10
cmp %r10, -8(%rbp)
jge else1:
then {
y = 7
movq $7, -16(%rbp)
need suffix to set size of "7"

jmp done1 # skip else

} else {
else1:

y = 9
movq $9, -16(%rbp)

}
done1:

...

Variables:

● x is -8(%rbp)
● y is -16(%rbp) or,

temporarily, %r10

If statements 2

72

// Case 2
if (x < y) {

y = 7;
}
else {

y = 9;
}

if (x < y)
mov -16(%rbp), %r10
cmp %r10, -8(%rbp)
jge else1:
then {
y = 7
movq $7, -16(%rbp)
need suffix to set size of "7"

jmp done1 # skip else

} else {
else1:

y = 9
movq $9, -16(%rbp)

}
done1:

...

Variables:

● x is -8(%rbp)
● y is -16(%rbp) or,

temporarily, %r10

Do-while loops

73

do {
x = x + 1;

} while (x < 10);

Variables:

● x is -8(%rbp)

Do-while loops

74

do {
x = x + 1;

} while (x < 10);

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp) |
reversed for cmp arg order

jl loop
sense not reversed

...

Variables:

● x is -8(%rbp)

Do-while loops

75

do {
x = x + 1;

} while (x < 10);

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp) |
reversed for cmp arg order

jl loop
sense not reversed

...

Variables:

● x is -8(%rbp)

Do-while loops

76

do {
x = x + 1;

} while (x < 10);

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp) |
reversed for cmp arg order

jl loop
sense not reversed

...

Variables:

● x is -8(%rbp)

While loops

77

while (x < 10) {
x = x + 1;

}

Variables:

● x is -8(%rbp)

While loops

78

while (x < 10) {
x = x + 1;

}

loop_test:
cmp $10, -8(%rbp) # reversed for cmp
jge loop_done # jump out if greater than

add $1, -8(%rbp)
jmp loop_test

loop_done:
...

Variables:

● x is -8(%rbp)

While loops

79

while (x < 10) {
x = x + 1;

}

loop_test:
cmp $10, -8(%rbp) # reversed for cmp
jge loop_done # jump out if greater than

add $1, -8(%rbp)
jmp loop_test

loop_done:
...

Variables:

● x is -8(%rbp)

While loops

80

while (x < 10) {
x = x + 1;

}

loop_test:
cmp $10, -8(%rbp) # reversed for cmp
jge loop_done # jump out if greater than

add $1, -8(%rbp)
jmp loop_test

loop_done:
...

Variables:

● x is -8(%rbp)

82

Recursive Functions and the Stack

How to Use Recursion?

• Let’s say we want to write a factorial function.

83

How to program Recursion?

• Let’s say we want to write a recursive factorial function.

• ...something like:

84

long fact(long n) {
if (n <= 1) {

return 1;
}

return n * fact(n - 1);
}

Factorial

In general: we need to use the stack to hold on to data when doing
recursive calls.

85

Follow Design Recipe: Signature

• What are arguments?
• What is returned?

86

#long fact(long)
fact:
...

Follow Design Recipe: Pseudocode

• The C looks good…

87

long fact(long n) {
if (n <= 1) {

return 1;
}

return n * fact(n - 1);
}

Follow Design Recipe: Variable Mappings

• Storing temp variable on the stack
• Returning result in %rax

88

#long fact(long n)
fact:
n -> (-8)%rbp
res -> %rax
...

Follow Design Recipe: Function Skeleton

89

#long fact(long n)
fact:
n -> (-8)%rbp
res -> %rax

Prologue:
enter $16, $0 # Allocate / align stack
Body:

Just say "TODO"
Epilogue:
leave # Clean up stack frame.
ret # Return to call site

fact(3)

code, static
data, etc.

long fact(long n) {
if (n <= 1) {

return 1;
}

return n * fact(n - 1);
}

Follow Design Recipe: Complete the Body

90

#long fact(long n)
fact:
n -> (-8)%rbp
res -> %rax

Prologue:
enter $16, $0 # Allocate / align stack
Body:
movq %rdi, -8(%rbp) # copy argument to stack
cmpq $1, -8(%rbp) # if (n > 1)
jg .decrement # goto fact(n-1)
movq $1, %rax # else return 1
jmp .end

.decrement
. . .
Epilogue:

.end
leave # Clean up stack frame.
ret # Return to call site

fact(3)

code, static
data, etc.

long fact(long n) {
if (n <= 1) {
return 1;

}

return n * fact(n - 1);
}

Follow Design Recipe: Complete the Body

91

#long fact(long n)
fact:
n -> (-8)%rsp
res -> %rax

Prologue:
enter $16, $0 # Allocate / align stack
Body:
movq %rdi, -8(%rbp) # copy 1st argument to stack
cmpq $1, -8(%rbp) # if (n > 1)
jg .decrement # goto fact(n-1)
movq $1, %rax # else return 1
jmp .end

.decrement
movq -8(%rbp), %rax # copy argument off stack to %rax
subq $1, %rax # n-1
movq %rax, %rdi # copy n-1 to 1st argument register %rdi
call fact # call fact(n-1)
imulq -8(%rbp), %rax # n * fact(n-1)
Epilogue:

.end
leave # Clean up stack frame.
ret # Return to call site

fact(3)

code, static
data, etc.

2

1

3

rax=1

rax=2

rax=6

long fact(long n) {
if (n <= 1) {
return 1;

}

return n * fact(n - 1);
}

