CS 3650 Computer Systems — Spring 2026

Memory, stack, and recursion

Week 3

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Memory on our machines

 The memory in our machines stores data so we can recall it later

* This occurs at several different levels
* Networked drive (or cloud storage)
* Hard drive
* Dynamic memory
* Cache

* For now, we can think of memory as a giant linear array.

.................................... %, A RARA Aanemn ARRRA rrrren .

o A PR o
(b g i @

Northeastern
University

Linear array of memory

* Each ‘box’ here we will say is 1 byte of memory
* (1 byte = 8 bits on most systems)

* Depending on the data we store,

we will need 1 byte, 2 bytes, 4 bytes, etc.

of memory

Northeastern
University

Linear array of memory

* Visually | have organized memory
in a grid, but memory is really
a linear array as depicted below.

—_,— e

 There is one address after the other

Northeastern 4
University

Linear array of memory

* Visually | have organized memory
in a grid, but memory is really
a linear array as depicted below.
* There is one address after the other

* Because these addresses grow large, typically we represent them in
hexadecimal (16-base number system: a digit can be 0-9 and A-F)

o (https://www.rapidtables.com/convert/number/hex-to-decimal.html)

—_,— e

Northeastern 5
University

https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html

Remember: “Everything is a number”

Data Type Range (unsigned)

“- to 255 (=2"8)

short int | w | 2 |0t065,535(=2M6)

_-- to 4,204,967,295 (=2132)

0 to 18,446,744,073,709,551,615
long int (=2764)

Northeastern
University

Addressing memory

Northeastern
University

Addressing memory

mov $0x41F08, %rax

We move the address 0x41F08 into rax

(%rax) now points to the contents of the
corresponding chunk of memory

Northeastern
University

Addressing memory

Offset addressing:

® We can point to addresses by
adjusting the pointer register by an
offset

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

Where does 8(%rax) point to?

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to?

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to? 20(%rax)
Where does 20(%rax) point to?

Northeastern
University

Addressing memory

-8(%rax)

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to? 20(%rax)
Where does 20(%rax) point to?
Where does -8(%rax) point to?

Northeastern
University

Addressing memory

-8(%rax)

-4(%rax)

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to? 20(%rax)
Where does 20(%rax) point to?
Where does -8(%rax) point to?
Where does -4(%rax) point to?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this? NO

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?
Like this? NO

- x86 is : the less significant
bytes are stored at lesser addresses

(byte of the number, 0x80, is)

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this.

Northeastern
University

Addressing memory

movqg (%rax), %rilo

Copies the of the address pointed
to by (%rax) to %r10

movqg %rax, %rll

Copies the contents of %rax to %rl11. Now
(%rax) and (%r11) point to the same
location.

Northeastern
University

Addressing memory

mov. (%rax), %ebx

What’s in %ebx?

How much we move is determined by
operand sizes / suffixes

Northeastern
University

Addressing memory

mov. (%rax), %ebx (
What’s in %ebx?

0x50607080

Northeastern
University

Addressing memory

movw 4(%rax), %bx

What’s in %bx?

Northeastern
University

Addressing memory

mov (%rax), %bx
What’s in %bx?

0x3040

Northeastern
University

Addressing memory

movh 6(%rax), %bl

What’s in %bl?

Northeastern
University

Addressing memory

movh 6(%rax), %bl
What’s in %bl?

0x20

Northeastern
University

Addressing memory

add , %brax

Modifying %rax changes where it points

Northeastern
University

Addressing memory

-8(%rax)

add , %brax

Modifying %rax changes where it points

Northeastern
University

Addressing memory

-8(%rax)

add , %brax
movg $0x42, (%rax)

How does movg change the memory state?

Northeastern
University

Addressing memory

add , %brax
movg $0x42, (%rax)

Modifying %rax changes where it points

Northeastern
University

Addressing memory: full syntax

(base, ,
ADDRESS = bhase + (*) +

Mostly used for addressing arrays:

: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Northeastern
University

31

Addressing memory: full syntax

(base, ,

ADDRESS = pase + (*) +

Mostly used for addressing arrays:

: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)

base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Northeastern
University

Note:
8(%rax) is equivalent to 8(%rax, 0, 0)

32

Addressing memory: full syntax (forloop.s on
Week 3 of Schedule)

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %rio0

loop:
cmp $8, %rcx
jge loop_end

add (%rax, %rcx, 8), %rilo
inc %rcx
jmp loop

loop_end:

Northeastern
University

Procedures/Functions

Northeastern
University

Procedure Mechanisms

* Several things happen when calling a procedure
(i.e., function or method)

Pass control
 Start executing from start of procedure
e Return back to where we called from

e Pass data
* Procedure arguments and the return value are passed

* Memory management
* Memory allocated in the procedure, and then deallocated on return

Xx86-64 uses the minimum subset required

Northeastern
University

x86-64 Memory Space

* Our view of a program is a giant byte array

 However, it is segmented into different regions

* This separation is determined by
the Application Binary Interface (ABI)

* This is something typically chosen by the OS.

* We traverse our byte array as a stack

Northeastern
University

API = how you call it in
source code

e.g. you #include <stdio.h>
and call printf()

ABI = how that call actually
looks at the binary level

e.g. the compiled code puts
format in %rdi, sets up the
stack frame, aligns the stack,
and expects the return value
in %rax.

36

https://en.wikipedia.org/wiki/Application_binary_interface

x86-64 Memory Space

Addresses grow up

Program Memory

Address
Bottom of
stack 2N-1
Stack)
Top of stack
Our Program Memory Space is divided into several segments. —»
« Some parts of it are for long lived data (the heap) (Unallocated)
« The other is for short-lived data (the stack)
typically used for functions and local variables. Heap
Static Data
Literals
Instructions 0
Northeastern 37

University

x86-64 stack

* There is a stack at the top of the memory Program Memory Address
* Yes, the stack that you learned thZtéEm of N1
in data structures course
Stack)
* You can push and pop data
Top of stack

(Unallocated)

Heap

Static Data

Literals

Instructions 0

Northeastern 38
University

x86-64 stack

Program Memory

Address
2N-1
Stack grows down .
(But hopefully not into the — | Stack
heap -- otherwise error!
v (Unallocated)
That means the top of our
stack is approaching Heap
address 0
Static Data
Literals
Instructions 0
Northeastern §

University

x86-64 stack

Program Memory

Address
Bottom of
stack 2N-1
. . . Stack)
With a Stack data structure, we can perform two main operations
1. push data onto the stack (add information)
a. Our stack grows llCploisidCic
a. Pushes data to top of the stack
b. Moves the stack pointer downward (Unallocated)
2. pop data off of the stack (remove information) Heap
a. Our stack shrinks
a. Pops data from the top of the stack
b. Moves the stack pointer upward Static Data
Literals
Instructions 0
Northeastern 42

University

x86-64 stack | PUSHQ Example

Program Memory

Base Pointer: %rbp
Always contains address of

top of current stack frame
PUSHQ Src Stack

o Fetch operand at src
o decrement %rsp by 8 (Q bytes)
o Write operand at address given by %rsp

—» Bottom of stack

(Unallocated)

Heap

Stack Pointer: %rsp
Always contains lowest Static Data
address in current stack frame

Literals

Instructions

Northeastern
University

Address
2N-1

43

x86-64 stack | PUSHQ Example

Program Memory

Address
Base Pointer: %rbp — | Bottom of stack -
Always contains address of i
top of current stack frame
e PUSHQ Src Stack 4
o Fetch operand at src
o decrement %rsp by 8 (Q bytes) src (-8)
o Write operand at address given by %rsp
o %rbpis unchanged
(Unallocated)
Heap
Stack Pointer: %rsp
Always contains lowest Static Data
address in current stack frame .
Literals
Instructions 0
Northeastern 44

University

x86-64 stack | POPQ Example

Program Memory
Address

Bottom of stack IN_1

Base Pointer: %rbp N
Always contains address of

e POPQ Dest top of current stack frame Stack N

o Read value at address given by %rsp
o Increment %rsp by 8 (Q bytes)

o Store value at Dest

o %rbp unchanged

(Unallocated)

Stack Pointer: %rsp

- Heap
Always contains lowest
address
Static Data
Literals
Instructions 0
Northeastern 45

University

The Process Stack

e Each process has a stack in memory that stores:
* Local variables
* Arguments to functions
* Return addresses from functions

* On x86:
* The stack grows downwards

e RSP (Stack Pointer) points to the bottom of the stack
(= newest data)

» RBP (Base Pointer) points to the base of the current frame

* Instructions like push, pop, call, ret, int, and iret all modify the stack

Northeastern
University

Creating and deleting stack frames for a function

void main(void) {

fo~"x\:
baz(y

void foo(int a) {

[void bar(int b) {

ba-'n
void baz(int c) {

}

code, static
data, etc.

Northeastern
University

Creating and deleting stack frames for a function

void main(void) {

code, static
data, etc.

Northeastern
University

48

Creating and deleting stack frames for a function

void main(void) {

fo~"x\:
baz(y

void foo(int a) {

b1 void bar(int b) {

ba-'n
void baz(int c) {

}

Allocation and deallocation of stack frames
require changing %rbp and %rsp

Northeastern
University

code, static
data, etc.

49

Creating a new stack frame for a function and
exiting

Create (enter) the new stack frame

push %rbp # push location of base pointer to stack

mov %rsp, %rbp # coples the value of the stack pointer
%rsp to the base pointer %rbp->%rsb and %rsp
now both point to the top of the stack

Do function here... RBP

RBP

RSP

When function is done, remove (leave) stack frame

mov %rbp, %rsp # sets %rsp to %rbp

pop %rbp # pops the top of the stack into %rbp,
where we stored the previous value
from the push

Northeastern 50
University

enter and leave

H enter creates a stack frame
enter $0, $0 # is equivalent to
push %rbp
mov %rsp, %rbp
RBP

RBP

RSP

and can allocate space in the stack
enter $24, $0 # is equivalent to g
push %rbp
mov %rsp, %rbp
#t sub $24, %rsp

the second arg indicates nesting level

Northeastern
University

51

enter and leave

leave exits a stack frame: does the inverse of enter el

leave # 1s equivalent to
mov %rbp, %rsp RSP
pop %rbp
RSP
Recall,
mov %rbp, %rsp # sets %rsp to %rbp

pops the top of the stack to %rbp,
where we stored the previous
value from enter

pop %rbp

Northeastern 52
University

Go to ASM Visualizer
Then goto slide #57

Northeastern
University

A “Design Recipe for Assembly”

1.Signature (C-ish)

2.Pseudocode (ditto)

3.Variable mappings (registers, stack offsets)
4.Skeleton

5.Fill in the blanks

| strongly recommend you to read
Nat Tuck’s Assembly Design Recipe in the reading list

Northeastern
University

Y

1. Sighature

 What are our arguments?
e What will we return?

factorial:

Northeastern
University

2. Pseudocode

 How do we compute the function?
* Thinking in directly in assembly is hard

* Translating pseudocode, on the other hand, is quite
straightforward

e Cworks pretty well

factorial:

Northeastern
University

3. Variable Mappings

Need to decide where we store temporary values

« Arguments are given: %rdi1, %rsi, %rdx, %rcx, %r8, %r9, then
the stack
Callee must

* Do we keep variables in registers? restore the
e Callee-save? %112, %r13, %r14, %rl5, %rbx original value
e Caller-save? %110, %r11 + argument registers before exiting

* Do we use the stack?
Callee can freely
modify the
register

factorial:

Northeastern
University

60

4. Function Skeleton

Prologue: Epilogue:
® push callee-saves ® leave -deallocate stack space
® enter - allocate stack space ® Restore (pop) any pushed registers
o stack alignment! ® ret-returnto callsite

Northeastern
University

4. Function Skeleton

push %ri2
push %rl3
enter $24, $0

leave
pop %rl3
pop %rl2
ret

Northeastern
University

5. Complete the Body

* Translate your pseudocode into assembly - line by line
* Apply variable mappings

Northeastern
University

Variables, Temporaries, Assighment

e Each Cvariable maps to a register or a stack location
(by using enter)

* Temporary results go into registers
e Registers can be shared / reused - keep track carefully

long x 5;
long vy X 2 1;
With:

X in %r10 [
y in %rbx
Temporary for x * 2 is %rdx

Northeastern
University

Variables, Temporaries, Assighment

e Each Cvariable maps to a register or a stack location

(by using enter)

* Temporary results go into registers

e Registers can be shared / reused - keep track carefully

mov $5, %rio

long x 5;

long vy X 2 1;

With:
X in %rl0
y in %rbx
Temporary for x * 2 is %rdx

Northeastern
University

Variables, Temporaries, Assighment

e Each Cvariable maps to a register or a stack location
(by using enter)

* Temporary results go into registers
e Registers can be shared / reused - keep track carefully

long x = 5; mov $5, %rilo
long vy X

VVﬂhi mov %rlQ, %rdx
X in %r10 imulg $2, %rdx

y in %rbx add $1, %rdx
Temporary for x * 2 is %rdx mov %rdx, %rbx

Northeastern
University

If statements 1

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 1

mov -16(%rbp), %rio
cmp %ri10, -8(%rbp)

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 1

mov -16(%rbp), %rio
cmp %ri10, -8(%rbp)

Variables: jge elsel:
o xis-8(%rbp)
e yis-16(%rbp) or, movg $7, -16(%rbp)

temporarily, %r10

elsel:

Northeastern
University

If statements 2

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 2

mov -16(%rbp), %rio0
cmp %ri10, -8(%rbp)
jge elsel:

movqg $7, -16(%rbp)

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 2

mov -16(%rbp), %rio0
cmp %ri10, -8(%rbp)
jge elsel:

movqg $7, -16(%rbp)

jmp donel

elsel:
Variables:

- —16(%rb
e xis-8(%rbp) movq $9 (%rbp)

e yis-16(%rbp) or,
temporarily, %r10 donel:

Northeastern
University

Do-while loops

do {
X = X

} while (x

Variables:

e xis-8(%rbp)

Northeastern
University

Do-while loops

do { loop:

} xh.lx : ; add $1, -8(%rbp)
wnitce X ’

Variables:

e XIS —8(%1"bp)

Northeastern
University

Do-while loops

do {
X = X

} while (x

Variables:

e xis-8(%rbp)

Northeastern
University

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp)

Do-while loops

do {

X X
} while (x

Variables:

e xis-8(%rbp)

Northeastern
University

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp)

Jj1 loop

While loops

while (x 10) {

X X 1;

}

Variables:

e xis-8(%rbp)

Northeastern
University

While loops

while (x 10) {

X X 1;

}

Variables:

e xis-8(%rbp)

Northeastern
University

loop_test:
cmp $10, -8(%rbp)

While loops

while (x 10) {
X X 1;

}

Variables:

e xis-8(%rbp)

Northeastern
University

loop_test:
cmp $10, -8(%rbp)
jge loop_done

While loops

while (x 10) {

X X 1;

}

Variables:

e xis-8(%rbp)

Northeastern
University

loop_test:
cmp $10, -8(%rbp)
jge loop_done

add $1, -8(%rbp)

Jjmp loop_test

loop_done:

Recursive Functions and the Stack

Northeastern
University

How to Use Recursion?

* Let’s say we want to write a factorial function.

Northeastern
University

How to program Recursion?

* Let’s say we want to write a recursive factorial function.

 ...something like:

long fact(long n) {
if (n 1) {
return 1;

}

return n = fact(n - 1);

}

Northeastern
University

Factorial

In general: we need to use the stack to hold on to data when doing
recursive calls.

Northeastern
University

Follow Design Recipe: Signature

 What are arguments?
 What is returned?

#long fact(long)
fact:

Northeastern
University

Follow Design Recipe: Pseudocode

* The Clooks good...

long fact(long n) {
if (n 1) {
return 1;

}

return n = fact(n - 1);

}

Northeastern
University

Follow Design Recipe: Variable Mappings

e Storing temp variable on the stack

e Returning result in %rax

#long fact(long n)
fact:
n -> (-8)%rbp

res -> %rax

Northeastern
University

Follow Design Recipe: Function Skeleton

long fact(long n) {
if (n 1) {
return 1;

#long fact(long n) }
fact:

n -> (-8)%rbp

res -> %rax }

return n = fact(n - 1);

enter $16, $0

Northeastern
University

Follow Design Recipe: Complete the Body

#long fact(long n)
fact:

#n -> (-8)%rbp
res -> %rax

enter $16, $0

long fact(long n) {
if (n 1) {
return 1;

}

return n * fact(n - 1);

}

Northeastern
University

Follow Design Recipe: Complete the Body

#long fact(long n)
fact:

n -> (-8)%rsp
res -> %rax

enter $16, $0

long fact(long n) {
if (n 1) {
return 1;

}

return n * fact(n - 1);

Northeastern
University

