Memory in Assembly

Memory

e So far, we've been mostly using the processor’s registers to store data
e Inlab, we are going to explore the stack and memory
e Today we’'ll talk more about addressing and accessing memory

Memory on our machines

e The memory in our machines stores data so we
can recall it later

e This occurs at several different levels

o Networked drive (or cloud storage)
o Hard drive

o Dynamic memory

o Cache

e For now, we can think of memory as a giant
linear array.

¢ Il"lllllllllllIIIIIIIIIIIIllllllllllIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIlIIIIIIII"I“IIIIIIIIIIIllIlIlIlIIllIlIIIIt @

Linear array of memory

e Each ‘box’ here we will say is 1 byte of memory
o (1 byte = 8 bits on most systems)

e Depending on the data we store, we will need 1
byte, 2 bytes, 4 bytes, etc. of memory

Linear array of memory

e Visually | have organized memory in a grid, but memory is really a

linear array as depicted below.
o There is 1 address after the other

Address: Address:
4 5

Address: Address: Address:
1 2 3

Linear array of memory BRERN

e Visually | have organized memory in a grid, but memory is really a

linear array as depicted below.
o There is 1 address after the other
o Because these addresses grow large, typically we represent them in hexadecimal
(16-base number system)
m (https://www.rapidtables.com/convert/number/hex-to-decimal.html)

Address: Address: Address: Address: Address:
O0x1 0x2 0x3 0x4 0x5

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Remember: “Everything is a number”

Data Type m Range (unsigned)

hort it w | 2 jobess
T T a—

n“ to 18,446,744,073,709,551 615

Addressing memory

e Address granularity: bytes

e Suppose we are looking at a chunk ~ 0x41F00
o wesee oo IS
e This diagram: each row shows 8 0x41F18
bytes (aka one quadword = 64 bits) ~ 9x41F20
R

o720 [A S

0w | R R

8

Addressing memory

movq $0x41F08, %rax

We move the address 0x41F08 into rax

(%rax) now points to the contents of the
corresponding chunk of memory

(%rax)

0x41F0Q0
0x41F08

o~«13 | I

Addressing memory

Offset addressing:

e \We can point to addresses by
adjusting the pointer register by an
offset

(%rax)

0x41F0Q0
0x41F08

o~«13 | I

10

Addressing memory

Offset addressing

8(%rax)

(%rax)

o~«1Foo | I A

0x41F08

o~«13 | I

11

Addressing memory

Offset addressing

8(%rax)
16(%rax)

(%rax)

o~«1Foo | I A

0x41F08

o~«13 | I

12

Addressing memory

Offset addressing

(%rax)

0«1 oo | I I I
0x41F08
8(%rax) s
16(%rax) &
0x41F20 BB
20(%rax) —o<41r28 [

ox41730 | I A I
ox41738 |

(K

Addressing memory

Offset addressing

8(%rax)

-8(%rax)

(%rax)

16(%rax)

20(%rax)

S (
X X 3 b ¢
. ~ & .
° = = .
L] ﬂ ﬂ []
NN
0 \S

4

Addressing memory

Offset addressing

-8(%rax)

(%rax) ~-4(%rax)

0x41F0Q0
0x41F08

8(%rax)
16(%rax)

20(%rax)

0x41F20 BB
<1r2¢
ox«1730 [I
o138 | N
|

5

Addressing memory

movg $0x1020304050607080, (%rax)

What does this look like in memory?

(%rax)

0x41F0Q0
0x41F08

o~«13 | I

16

Addressing memory

movg $0x1020304050607080, (%rax)

What does this look like in memory?

Like this?

(%rax)

2 [0 w [50 [[s0

0x41F0Q0
0x41F08

o~«13 | I

17

Addressing memory

movg $0x1020304050607080,

(%rax)

What does this look like in memory?

Like this?

NO

(%rax)

9x41F00 g-------
e e

o~«13 | I

18

Addressing memory

movg $0x1020304050607080, (%rax)

What does this look like in memory?

Like this? NO

— Xx86 is little-endian: the less significant

bytes are stored at lesser addresses

(end byte of the number, 0x80, is little)

(%rax)

0x41F00

o~«13 | I

19

Addressing memory

movg $0x1020304050607080, (%rax)

What does this look like in memory?

Like this.

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

20

Addressing memory

movqg (%rax), %rio

Copies the contents of the address
pointed to by (%rax) to %r10

movq %rax, %rll

Copies the contents of %rax to %r11.

Now (%rax) and (%r11) point to the
same location.

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

21

Addressing memory

movl (%rax), %ebx

What's in %ebx?

How much we move is determined by
operand sizes / suffixes

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

22

Addressing memory

movl (%rax), %ebx

What's in %ebx?

0x50607080

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

23

Addressing memory

movw 4(%rax),

What's in %bx?

%b x

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

24

Addressing memory

movw 4(%rax),
What's in %bx?

0x3040

%b x

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

25

Addressing memory

movb 6(%rax),

What's in %bx?

%b'1

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

26

Addressing memory

movb 6(%rax),
What's in %bx?

0x3020

%b'1

(%rax)

ox41Fo0 [
0x41F08 [l m

o~«13 | I

27

Addressing memory

addg $8, %rax

Modifying %rax changes where it points

(%rax)

0x41F00
0x41F08
0x41F10
ox41F18 |

8

Addressing memory

addg $8, %rax

Modifying %rax changes where it points

(%rax)

0x41F0Q0
0x41F08
0x41F10

-8(%rax)

Addressing memory

addg $8, %rax
movqg $0x42, (%rax)

Modifying %rax changes where it points

(%rax)

0x41F00
0x41F08
0x41F10
ox41F18 [N

0

Addressing memory: full syntax

displacement(, index, scale)

ADDRESS = + (index * scale) + displacement

Mostly used for addressing arrays:

displacement: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
. (register) base pointer (%rax in previous examples)

index: (register) index of element

scale: (immediate) size of an element

31

Addressing memory: full syntax

displacement(, index, scale)
ADDRESS = + (index * scale) + displacement

Mostly used for addressing arrays:

displacement: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
. (register) base pointer (%rax in previous examples) Note:

index: (register) element index 8(%rax) is

scale: (immediate) size of an element

equivalent to
8(%rax, 0, 0)

32

Addressing memory: full syntax

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %rio

loop:
cmp $8, %rcx

jge loop_end
add (%rax, %rcx, 8), %rilo
inc %rcx
jmp loop
loop_end:

What's in %r10 after loop _end?

0x41F00
0x41F08
0x41F10
0x41F18
0x41F20
0x41F28
0x41F30
0x41F38

S | © |
W | N |

S
-

S (| S
0 ([

S
(€
w

w

