NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter
Desnoyers’ lecture slides for the same course.

31 cO Xor eax,eax
b8 00 00 00 00 mov eax,0x0

(S3650 Computer Systems

Week 2 Readings

e Dive into Systems, Chapters 6 and 7
e Assembly Guide

ASSEMBLY

Readings
Slides & Notes Slides & Notes
Code

Additional Resources

e Ferd's notes
e Ziming's slides

Code
No files have been uploaded yet.

Additional Resources
Please look over these curated links.

o Wikibooks x86 Assembly

o Wikibooks X86 Assembly/GAS Syntax

* x86-64 SysV ABI (local PDF)

e AMD Programmer’s Manual, Volume 3

e AMD64 Linux Syscalls

e Whatis the ‘Id’ tool

o Writing a Function in Assembly: Intel x86 ATT Assembly Stack Part 1
e Writing a Function in Assembly: Intel x86 ATT Assembly Stack Part 2
e Writing a Function in Assembly: Intel x86 ATT Assembly Stack Part 3

Agenda

1. Memory (storage)
2. Stack - the data structure. Implementation in main memory
3. Recursion

What we want for memory?

A tradeoff among Speed, Cost
and Capacity

Ideally one would desire an
indefinitely large memory
capacity such that any
particular ... word would be
immediately available. ... We
are ... forced to recognize the
possibility of constructing a
hierarchy of memories, each
of which has greater capacity
than the preceding but which
is less quickly accessible.

A. W. Burks, H. H. Goldstine, and

J. von Neumann

Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument, 1946

Memory on our machines

* The memory in our machines stores data
so we can recall it later
* This occurs at several different levels
* Networked drive (or cloud storage)
* Hard drive
* Dynamic memory
* Cache

CPU Registers (280, 16-bit register, 1976). We don’t usually refer to registers as memory

-2 Ao
bus drivers
HL DE BC AF

Cache. AMD K8 (Athlon 64/0pteron) processor, from around the
mid-2000s era.

: ol
| Floating Point Unit

- ——
~ ol

A—-‘.D_;..H‘._ .‘ :‘. .‘- .‘- “r -i..v
o L AL R
| SDAEERcRE S | L) L) L1 L]
o e |

i A LA B

'DDR ‘MerhorAy Intef'facé

&t‘h 'Scan A]lgh £ | = ;

— Hltro code

Memory Controller

Buffer Allocation
Register Rename

Instruction Queue (for
critical fields of the uOps)

General Instruction Addre
Memory Instruction Address Que
(queues register entries and latency
fields of the uOps for scheduling)

Floating Point, MM X
Renamed Register File
128 entries of 128 bit.

(8x8 dependency matrix)

Parallel (Matrix) Scheduler
for the two double pumped ALU's

General Floating P
Slow Integer Scheduler
(8x8 dependency matrix)

Load / Store uOp Sched:
(8x8 dependency matrix)

Load / Store Linear Adc
Collision History Table

Integer Execution Core

uOp Dispatch unit & Replay
Dispatches up to 6 uOps / cycle
Integer Renamed Registe
128 entries of 32 bit + 6 status flags
12 read ports and six write ports
Databus switch & Bypasse
from the Integer Register File.
Flags, Write Back
Double Pumped ALU 0
Double Pumped ALU |
(7) Load Address Generator Unit
(8) Store Address Generator Unit
(9) Load Buffer (48 entries)
(10) Store Buffer (24 entries)

Cache. Intel Pentium 4.

Intel Pentium 4 Northwood

Execution Pipeline Start Instruction Trace Cache

Micro code Sequencer
Micro code ROM & Flash

Trace Cache Acce
next Address Predict

Register Alias History Tables (2x126)
Register Alias Tables uOp Queue

Trace Cache Distributed Tag comparators
Fill Buffers 24 bit virtual Tags

Trace Cache Branch Predic

Table (BTB), 512 entries.
Return Stacks (2x16 entries)
Trace Cache next IP's (2x)

Miscellaneous Tag Data

Up to 4 decoded uOp
(from max. one x86 instr/cycle

Instructions with more than four
are handled by Micro Sequencer

Trace Cache LRU bits

aw Instruction Bytes in
Data TLB, 64 entry fully
associative, between threads
dual ported (for loads and stores)

HSOSSSSS S
Instruction Fet
from L2 cache and
Branch Prediction

Front End Branch Pre
Tables (BTB), shared, 4096
entries in total

ages. In: Virtual address [31:12]

] z = ps
[e — A RETIGURY RESNIN Ringed 2 i g s . Out: Physical address [35:12] +

2 page level bits
[256 4Byte - i | -256 kByte -

; L2 Cache P | : L2 Cache

i] e -z 5
i —Block R Front Side Bus Inte

e e . A — face, 400..800 MHz

= - b=

(11) ROB Reorder Buffer
(12) 8 kByte Level 1 Data cache
four way set associative. 1IR/1W

(13) Summed Address Index decode ¢
(14) Cache Line Read / Write Transferbuffers and
256 bit wide bus to and from L2 cache

April 19, 2003 www.chip-architect.com

T e

mfﬁ-’”,Q eue,mUrlcorﬁe, 1/O".

= o

Cache. Intel Xeon
E5/E7 Sandy Bridge-EP
around 2011-2013,
showing a 10-core
server-class die layout.

A
HHHEHTHHHT

Level Latency Bandwidth Typical Size (per core / Approx. Cost per GB Notes

(Typical) (Typical) chip) (USD)
CPU Registers ~0.2-0.5ns ~5-10TB/s Tens to hundreds of on-die only Fastest storage, directly wired
(internal) registers into execution units
L1 Cache (SRAM) ~0.5 ns ~1-2 TB/s 32—64 KB per core on-die only Separate instruction & data
caches
L2 Cache (SRAM) ~2_5ns ~500 GB/s 256 KB—1 MB per on-die only Private per core
core
L3 Cache (SRAM) ~10-15ns ~100-300 GB/s8-64 MB shared on-die only Shared among all cores
per chip
:WDa;rA 'l\\n’l;%mory ~60-100 ns ~50-100 GB/s 8-128 GB $3-%5 Volatile, off-chip, DDR4/DDR5
NVMe SSD (Flash) ~50-100 uys ~2-7 GB/s 0.5-4TB $0.05-%$0.10 Non-volatile, PCle interface
SATA SSD (Flash) ~100—-200 us ~500 MB/s 0.5-2TB ~$0.05 Slower interface than NVMe

HDD (Magnetic disk) ~5-10 ms ~100-200 MB/s1-20 TB ~$0.02 Mechanical, highest latency

For now, we discuss the
Main Memory (DRAM)
and we can think of it as a

giant linear array.

11

Linear array of memory

* Each ‘box’ here we will say is 1 byte of

memory

* (1 byte = 8 bits on most systems)

* Depending on the data we store,

we will need 1 byte, 2 bytes, 4 bytes, etc.

of memory

Linear array of memory

* Visually I have organized memory
in a grid, but memory is really
a linear array as depicted below.

* There is one address after the other

Address:

Address:

Address:

Address:

Address:

Linear array of memory

* Visually I have organized memory
in a grid, but memory is really
a linear array as depicted below.

* There is one address after the other
* Because these addresses grow large, typically we represent them in

hexadecimal (16-base number system: a digit can be 0-9 and A-F)

e (https://www.rapidtables.com/convert/number/hex-to-decimal.

html)

Address:
1

Address:
2

Address:
3

Address:
4

Address:
5

)

https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://www.rapidtables.com/convert/number/hex-to-decimal.html

Remember: “Everything is a number”

Data Type Range (unsigned)

-_ to 255 (=218)

short int | w | 2 |0t065535(=2"16)
0 to 4,294,967,295 (=2"32)
long int | g | 8 [01018.446.744,073,709,551,615 (=2"64)

Addressing memory

Addressing memory

mov $0x41F08, %rax

We move the address 0x41F08 into rax

(%rax) now points to the contents of
the corresponding chunk of memory

Addressing memory

Offset addressing:

e We can point to addresses by
adjusting the pointer register by
an offset

Addressing memory

Offset addressing

8(%rax)

Where does 8(%rax) point to?

Addressing memory

Offset addressing

8(%rax)
16(%rax)

Where does 8(%rax) point to?
Where does 16(%rax) point to?

Addressing memory

Offset addressing

8(%rax)
16(%rax)

Where does 8(%rax) point to? 20(%rax)

Where does 16(%rax) point to?
Where does 20(%rax) point to?

Addressing memory

Offset addressing

8(%rax)
16(%rax)

Where does 8(%rax) point to? 20(%rax)

Where does 16(%rax) point to?
Where does 20(%rax) point to?
Where does -8(%rax) point to?

(%rax)

-8(%rax)

Addressing memory

Offset addressing

8(%rax)
16(%rax)

Where does 8(%rax) point to? 20(%rax)

Where does 16(%rax) point to?
Where does 20(%rax) point to?
Where does -8(%rax) point to?
Where does -4(%rax) point to?

(%rax)

-8(%rax)

-4 (%rax)

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)
What does this look like in memory?

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)
What does this look like in memory?

Like this?

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)
What does this look like in memory?

Like this? NO

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)
What does this look like in memory?

Like this? NO

— X86 is : the less significant
bytes are stored at lesser addresses

(byte of the number, 0x80, is)

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)
What does this look like in memory?

Like this.

Addressing memory

movq (%rax), %rio

Copies the of the address
pointed to by (%rax) to %r10

movq %rax, %rll

Copies the contents of %rax to %r11.
Now (%rax) and (%r11) point to the
same location.

Addressing memory

mov . (%rax), %ebx
What's in %ebx?

How much we move is determined by
operand sizes / suffixes

Addressing memory

mov . (%rax), %ebx
What's in %ebx?

0x50607080

Addressing memory

movw 4(%rax), %bx

What's in %bx?

Addressing memory

movw 4(%rax), %bx

What's in %bx?

0x3040

Addressing memory

movh 6(%rax), %bl
What's in %bl?

Addressing memory

movh 6(%rax), %bl
What's in %bl?

0x20

Addressing memory

add , %rax

Modifying %rax changes where it
points

Addressing memory

-8(%rax)

add $8, %rax (%rax)

Modifying %rax changes where it
points

Addressing memory

-8(%rax)

add , %rax (%rax)
movq $0x42, (%rax)

How does movq change the memory
State?

Addressing memory

add , %rax
movq $0x42, (%rax)

Modifying %rax changes where it
points

Addressing memory: full syntax

(base, ,

ADDRESS = base + (*) +

Mostly used for addressing arrays:

: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Addressing memory: full syntax

(base, ,)

ADDRESS = base + (*) +

Mostly used for addressing arrays:
: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Note:
8(%rax) is equivalent to 8(%rax, 0, 0)

Addressing memory: full syntax

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %rio

loop:
cmp $8, %rcx
jge loop_end

add (%rax, %rcx, 8), %rio
inc %rcx
jmp loop

loop_end:

Procedures/Functions

Procedure Mechanisms

* Several things happen when calling a procedure
(i.e., function or method)
* Pass control
* Start executing from start of procedure
* Return back to where we called from

* Pass data
* Procedure arguments and the return value are passed

* Memory management

. Mﬁmory allocated in the procedure, and then deallocated on
return

x86-64 Memory Space

API = how you call it in source code

e.g. you #include <stdio.h>and call

* Qur view of a program is a giant byte array printf ()
ABI = how that call actually looks at the
o) . . . binary level
* However, it is segmented into different regions
* ThlS Separation is determiHEd by e.g. the compiled code puts format in %rdi,
1 i 1 ts up the stack fi ,ali the stack, and
the Application Binary Interface (ABI) mocts the retm ealie ot &

* This is something typically chosen by the OS.

* In functions, we traverse our byte array as a stack

https://en.wikipedia.org/wiki/Application_binary_interface

Memory Map of Linux Process (32 bit)

Each process in a multi-tasking OS runs in its own memory sandbox.

This sandbox is the virtual address space, which in 32-bit mode is
always a 4GB block of memory addresses.

These virtual addresses are mapped to physical memory by page tables,
which are maintained by the operating system kernel and consulted by

the processor.

Memory Map of Linux Process (32 bit system)

1GB //,
1

3GB

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Seguentatio’_ ‘

9xc0000008 == TASK_SIZE

} Random stack offset

Stack (grows down)

Il

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

]_r brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data o

end_code https://manybutfinite.com/pos
0%08048000 anatomy-of-a-program-in-me

5 mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

/proc/pid_of_process/maps

Example processmap.c

#include <stdio.h>
#include <stdlib.h>

int main()

{
getchar();
return O;

cat /proc/pid/maps
pmap -X pid
pmap -X “pidof pm"”

1GB =«

368

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

Stack (grows down)

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

U

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

ziming@ziming-ThinkPad:
21732
Address Perm Offset Device

./pm

56569000 r-xp 00000000 103:02 28575310 4
56562000 r--p 00000000 103:02 28575310 4
5656b000 rw-p 00001000 103:02 28575310 4
57cf2000 rw-p 0000000 0O0:00 0 136
f7d73000 r-xp 00000000 103:02 2883591 1876
f7f48000 ---p 001d5000 103:02 2883591 4
f7f49000 r--p 001d5000 103:02 2883591 8
f7f4b000 rw-p 001d7000 103:02 2883591 4
f7f4c000 rw-p 00000000 00:00 (¢] 12
f7f75000 rw-p 000OOEEO 00:00 0 8
f7f77000 r--p 00000000 00:00 0
f7f7a000 r-xp 00000000 00:00 0
f7f7c000 r-xp 00000000 103:02 2883587
f7fa2000 r--p 00025000 103:02 2883587
f7fa3000 rw-p 00026000 103:02 2883587
ffef3000 rw-p 000OOEEO 00:00 0

09xcoe00e08 == TASK_SIZE

P Random stack offset

> RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

program break
brk

start_brk
\

» Random brk offset

end_data

start_data
end_code

0x08048000
]

4 4
4 4
4 4
4 4
TIPNTTD

(<]
(<]

[
S

NDSA D BHLOOO®®S
[
H

NS DS DOOOO®O®NSO®

[y
(=Y

988 988

4

H

I ~
IS ~
NBLADBODO®OOARON B A

[y

[y

0

NDADDLROOOOOLOOO AL DD

0

[cNclcNoNoNoNoNoNoNoNoNoNoNoNol

(<]

(BN <NoNoNoNoNoNoNoNoNoNoNoNo Moo

(<]

[clcNcNolNcNoNoNoNoNoNoNoNoRoNol

[<]

[cloNcoNoNoNoNoNoNoNoNoNoNoNoNol

~/Dropbox/myTeaching/System Security - Attack and Defense for Binaries UB 2020/code/processmap$ pmap -X 21732

Inode Size Rss Pss Referenced Anonymous LazyFree ShmemPmdMapped Shared Hugetlb Private_Hugetlb Swap

[cNcNoNoNoNoNoNoNoNoNoNoNoNoNoNol

SwapPss Locked
0

[cNcNcoNoNoNoNoNoNoNoNoNoNoNoNol
[clcloNoNoNoNoNoNoNoNoNoNoNoNoNol

Mapping
pm

pm

pm
[heap]
libc-2.
1libc-2.
libc-2.
libc-2.

[vvar]
[vdso]
1d-2.27.s0
1d-2.27.s0
1d-2.27.s0
[stack]

KB

Memory Map of Linux Process (64 bit system)

ziming@ziming-ThinkPad:~/Dropbox/myTeaching/System Security - Attack and Defense for Binaries UB 2020/code/processmap$ pmap -X 22891
22891: . /pm64
Address Perm Offset Device Inode Size Rss Pss Referenced Anonymous LazyFree ShmemPmdMapped Shared_Hugetlb Private_Hugetlb Swap SwapPss Locked Mapping

55bf7ae37000 r-xp 00000000 103:02 28577490 4 (5} 0 0 0 0 pm64
55bf7b037000 r--p 000OOEEO 103: 28577490 pm64
55bf7b038000 rw-p 00001000 103: 28577490 pm64
55bf7ccOcO00 rw-p 0OOOOEEO 00: 0 [heap]
7fc7ebdb600O r-xp 00000000 103: 660090 libc-2.
7fc7ebf9deee ---p 001e7000 103: 660090 libc-2.
7fc7ec19d000 r--p 001e7000 103: 660090 libc-2.
7fc7ec1al1000 rw-p 001ebBod : 660090 libc-2.
7fc7ec1a3000 rw-p 00000000 0
7fc7ec1a7000 r-xp 00000000 660062
7fc7ec3a6000 rw-p 00000000 H 0
7fc7ec3cefdO r--p 00027000 H 660062
7fc7ec3cf00O rw-p 00028000 : 660062
7fc7ec3d0000 rw-p 00000000 . (]
7ffe05803000 rw-p 00000000
7ffe058b9000 r--p 00000000
7ffe058bcOOO r-xp 0OOOOOOO

ffffffffff600000 r-xp 0OOOOOOO

(<]
(<]

[y
[

[
[

1d-2.27.s0

1d-2.27.s0
1d-2.27.s0

oy
OO ONALDLDOONODOOOU A DD

oy
OQOONAL,DLOONODOOOO S DD

[stack]
[vvar]
[vdso]
[vsyscall]

[cllcoloooNoNoNoNoNoNoNoNoNoNoRNoRol
[cNcoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[cNcNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[clcNoNoNoNoNoNoNoNoNoNoNoNoNoRoNol
[clcoloNoNoNooNoNoNoNoBoNoNoNooRNoRol

[cHI-NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[l < NoNoNoNoNoNoNoNoNoNoNoNoNoNo Mool

KB

x86-64 Memory Space

Addresses grow up

Program Memory

Bottom of Address
stack 2N-1
Stack
Top of stack

Our Program Memory Space is divided into several

segmentS. > (Unallocated)

« Some parts of it are for long lived data (the heap)

« The other is for short-lived data (the stack) Heap

icall d for functions and local variables.
typically used for functio vari Static Data

Literals
Instructions 0

Stack

Stack is essentially scratch memory for functions
« Used in MIPS, ARM, x86, and x86-64 processors

Starts at high memory addresses, and grows down

Functions are free to push registers or values onto the stack, or pop values from
the stack into registers

The assembly language supports this on x86

« esp/rsp holds the address of the top of the stack

« push eax/rax 1) decrements the stack pointer (esp/rsp) then 2) stores the
value in eax/rax to the location pointed to by the stack pointer

* pop eax/rax 1) stores the value at the location pointed to by the stack
pointer into eax/rax, then 2) increments the stack pointer (esp/rsp)

x86/64 Instructions that affect Stack

push, pop, call, ret, enter, leave

x86/64 Instructions that affect Stack

Before: push eax/rax After

High addr

esp/rsp

esp/rsp

Low addr

x86/64 Instructions that affect Stack

Before: pop eax/rax After: eax/rax = X
Some value Z Some value Z
Some value Y esp/rsp ——> Some value Y

esp/rsp ——P» Some value X

x86/64 Instructions that affect Stack

Before: call eax After: eip = eax

stack

I
|
1
|
: 1. Push the address of next instruction to the
: 2. Move the dest address to %eip

|

x86/64 Instructions that affect Stack

ret

After: eip = X

: The RET instruction pops the top of the stack to EIP,

1 so the CPU continues to execute from there
1
1

|
1
|
I
You can consider the RET instruction as a special POP 1
instruction. POP moves whatever ESP points to to the :
POP operand and increments ESP. In RET, the I
operand (destination register) is hardcoded to RIP. I

1

|

x86/64 Instructions that affect Stack

push ebp
: mov ebp, esp
: sub esp, #imm

Before: enter After:

esp

ebp

esp

x86/64 Instructlons that affect Stack

. mov esp, ebp
_p0pebp

leave After: ebp = old ebp

x86-64 Stack

* There is a stack at the top of the memory

* Yes, the stack that you learned
in data structures course

* You can push and pop data

Program Memory

Bottom of
stack

Stack

Top of stack

(Unallocated)

Heap

Static Data

Literals
Instructions

Address
2N-1

A

x86-64 Stack

Program Memory

Address
2N_1

Stack grows down N
(But hopefully not into the Stack

heap -- otherwise error!

| (Unallocated)

That means the top of our Heap

stack is approaching

address 0 Static Data
Literals

Instructions 0

x86-64 Stack

Program Memory

Address

2N-1
Stack grows down

(But hopefully not into the “
heap -- otherwise error!

You'll observe things like -8 (%rsp)
in your assemble to remind you that

things are growing down in the stack (Unallocated)
\
That means the top of our Heap
stack is approaching
address O Stat|c Data
Literals
Instructions 0

x86-64 Stack

Stack Pointer: %rsp
Always contains lowest address

This is the “top” of the stack

]

You'll observe things like -8 (%rsp) mm w
in your assemble to remind you that
things are growing down in the stack

Program Memory

Address
2N_1

(Unallocated)

Heap

Static Data

Literals
Instructions 0

x86-64 Stack

With a Stack data structure, we can perform two main operations

1. push data onto the stack (add information)
a. Our stack grows
a. Pushes data to top of the stack
b. Moves the stack pointer downward

2. pop data off of the stack (remove information)
a. Our stack shrinks
a. Pops data from the top of the stack
b. Moves the stack pointer upward

Program Memory

Bottom of
stack

Stack

Top of stack

(Unallocated)

Heap

Static Data

Literals
Instructions

Address
2N-1

A

x86-64 stack | PUSHQ Example

Program Memory

Base Pointer: %rbp —{ Bottom of
Always contains address stack
of top of current stack
frame Stack
PUSHQ Src
Top of stack

o Fetch operand at src

o decrement %rsp by 8 (Q bytes)

(Unallocated)

o Write operand at address given by %rsp

Heap

Stack Pointer: %rsp

Static Data

Literals

Always contains lowest

address in current stack

Instructions

frame

Add
2N

A

ress
-1

A

x86-64 stack | PUSHQ Example

Base Pointer: %rbp
Always contains address
of top of current stack

frame
PUSHQ Src

o Fetch operand at src
o decrement %rsp by 8 (Q bytes)
o Write operand at address given by %rsp

Stack Pointer: %rsp
Always contains lowest
address in current stack
frame

Program Memory

—>

Bottom of
stack

Stack

src (-8)

(Unallocated)

Heap

Static Data

Literals

Instructions

Address
2N-1

A

POPQ Dest

©)

@)
@)
@)

x86-64 stack | POPQ Example

Base Pointer: %rbp

Program Memory

Always contains address —
of top of current stack
frame

Read value at address given by %rsp
Increment %rsp by 8 (Q bytes)

Store value at Dest

%rbp unchanged Stack Pointer: %rsp /
Always contains lowest
address

Bottom of stack

Stack

(Unallocated)

Heap

Static Data

Literals

Instructions

Address
2N-1

A

C/C++ Function in x86

What information do we need to call a function at runtime? Where are
they stored?

Code

Parameters

Return value

Global variables

Local variables

Temporary variables

Return address

Function frame pointer
Previous function Frame pointer

Global and Local Variables in C/C++

Variables that are declared inside a function or block are called local
variables. They can be used only by statements that are inside that
function or block of code. Local variables are not known to functions
outside their own.

Global variables are defined outside a function. Global variables hold
their values throughout the lifetime of your program and they can be
accessed inside any of the functions defined for the program.

In the definition of function parameters which are called formal
parameters. Formal parameters are similar to local variables.

Global and Local Variables (misc/globallocalv)

char g_i[] = "I am an initialized global variable\n"; int main(int argc, char *argvl[])
char* g_u; {
int_i=10;
int func(int p) intl u:
{
intl_i=10; . L. .
printf("g_i is at %p\n", &g_i);
intl_u;

printf("g_u is at %p\n", &g_u);

printf("L_i in func() is at %p\n", &L_i);
printf("l_i in main() is at %p\n", &L_i);
printf("l_u in func() is at %p\n", &_u);
orintiCp in funcis at %pAn &pl printf("l_u in main() is at %p\n", &I_u);

return 0;
func(10);

Global and Local Variables (misc/globallocalv 32bit)

ziming@ziming-ThinkPad:~/Dropbox/m
g 1 is at 0x56558020
g_u is at 0x5655804c

in main() i1s at Oxfff7c6d4

in main() is at Oxfff7c6ds8

in func() is at Oxfff7c6a8

|

L=

1L 1 in func() is at Oxfff7c6a4
(el

: is at Oxfff7c6cO

Global and Local Variables (misc/globallocalv 64bit)

. /main64
i 1s at 0x55c30d676020
is at 0x55c30d676050

L in main() is at Ox7ffcd74866dc

in main() is at Ox7ffcd74866d8

L in func() is at Ox7ffcd74866ac

~u in func() is at Ox7ffcd74866a8
in func() is at Ox7ffcd748669c

C/C++ Function in x86/64

What information do we need to call a function at runtime? Where are
they stored?

Code [.text]

Parameters [mainly stack (32bit); registers + stack (64bit)]
Return value [eaX, rax]

Global variables [.bss, .data]

Local variables [stack; registers]

Temporary variables [stack; registers]

Return address [stack]

Function frame pointer [ebp, rbp]

Previous function Frame pointer [stack]

The Process Stack

* Each process has a stack in memory that stores:
* Local variables
* Arguments to functions
* Return addresses from functions

* On x86:
* The stack grows downwards

* RSP (Stack Pointer) points to the bottom of the stack
(= newest data)

* RBP (Base Pointer) points to the base of the current frame

* Instructions like push, pop, call, ret, int, and iret all modify the stack

Creating and deleting stack frames for a function

void main(void)

{

void foo(int a)
foo(x); {
baz(y); _ void bar(int b)

void baz(int c)
baz(n); H

}

code, static
data, etc.

Creating and deleting stack frames for a function

void main(void) -

{

code, static
data, etc.

Creating and deleting stack frames for a function

void main(void)
{
void foo(int a)
foo(x); {
baz(y); _ void bar(int b)

void baz(int c)

baz(n);,

}

Allocation and deallocation of stack
frames require changing %rbp and %rsp

code, static
data, etc.

Creating a new stack frame for a function and exiting

Create (enter) the new stack frame
push %rbp # push location of base polnter to stack
mov %rsp, %rbp # coples the value of the stack pointer

%rsp to the base polnter %rbp—%rsb and
%rsp

now both point to the top of the stack

Do function here...

RBP

RBP RSP

When function is done, remove (leave) stack frame

mov %rbp, %rsp # sets %rsp to %rbp

pop %rbp # pops the top of the stack into %rbp,
where we stored the previous value
from the push

enter and leave

enter creates a stack frame
enter $0, $0 # is equivalent to

push %rbp
mov %rsp, %rbp

and can allocate space in the stack
enter $24, $0 # is equivalent to

push %rbp RBP
mov %rsp, %rbp
sub §24, %rSsp

the second arg indicates nesting level

enter and leave

leave exits a stack frame: does the inverse of enter

leave # 1s equivalent to RBP
mov %rbp, %rsp
pop %rbp

Recall,
mov %rbp, %rsp # sets %rsp to %rbp

pops the top of the stack to %rbp,
where we stored the previous
value from enter

pop %rbp

x86 (32 bit) Linux Calling Convention (cdecl)

Caller (in this order)

« Pushes arguments onto the stack (in right to left order)
* Execute the call instruction (pushes address of instruction after call,
then moves dest to eip)

Callee

* Pushes previous frame pointer onto stack (ebp)

« Setup new frame pointer (mov ebp, eslo)

« Creates space on stack for local variables (sub esp, #imm)
« Ensures that stack is consistent on return

« Returnvalue in eax register

Callee Allocate a stack (Function prologue) 32-bit

Three instructions:

push ebp; (Pushes previous frame pointer onto stack)
mov ebp, esp; (change the base pointer to the stack)
sub esp, 10; (allocating a local stack space)

Callee Deallocate a stack (Function epilogue) 32-bit

mov esp, ebp

pop ebp
ret

Global and Local Variables (misc/globallocalv)

int func(int p)
{
intli=10;
intl_u;

printf("l_i in func() is at %p\n", &L_i);
printf("l_u in func() is at %p\n", &l_u);
printf("p in func() is at %p\n", &p);
return O;

Function main()

657: 83 ecOc sub esp,0xc
65a: 6a0a push Oxa

65c: e8 3c ff ff ff call 59d <func>
661: 83c410 add esp,0x10

Function func()

59d:
59e:
5a0:
5a3:
5aa:
5ad:
5b0:
5b1:
5b6:
5bb:
S5be:
5c1:
5c4.
5¢5:
5ca:

5cf:

5d2:
5d5:
5d8:
5d9:
5de:
5e3:
5e6:
5eb:
5ec:

55 push ebp

89 e5 mov ebp,esp

83 ec18 sub esp,0x18
c745f40a000000 mov DWORD PTR [ebp-0xc],0xa
83 ec 08 sub esp,0x8

8d 45 f4 lea eax,[ebp-0xc]
50 push eax

68 00 07 00 00 push 0x700

e8 fc ff ff ff call 5b7 <func+0x1a>
83c410 add esp,0x10

83 ec 08 sub esp,0x8

8d 45 f0 lea eax,[ebp-0x10]
50 push eax

68 18 07 00 00 push 0x718

e8 fc ff ff ff call 5cb <func+0x2e>
83c410 add esp,0x10

83 ec 08 sub esp,0x8

8d 45 08 lea eax,[ebp+0x8]
50 push eax

68 30 07 00 00 push 0x730

e8 fc ff ff ff call 5df <func+0x42>
83c410 add esp,0x10

b8 00 00 00 00 mov eax,0x0

9 leave

c3 ret

Draw the stack (x86 cdecl)

%6 Cdel n a chmc»ﬁm

HFon Lrame

(% ebp) + saed bebp
U(Yebp) < RET
2(febp) « Kt oxgAmews

Q(Tep) - mybea local vanabn

Stack example: misc/fiveParameters_64

int func(int a, int b, intc, intd, int e) X86-64 disassembly
{

returna+b+c+d+e;

}

int main(int argc, char *argv[])
{

func(1, 2, 3, 4, 5);
}

A “Design Recipe for Assembly”

1. Signature (C-ish)

2. Pseudocode (ditto)

3. Variable mappings (registers, stack offsets)
4. Skeleton

5. Fill in the blanks

I strongly recommend you to read
Nat Tuck’s Assembly Design Recipe in the reading list

1. Signature

* What are our arguments?

* What will we return?

factorial:

2. Pseudocode

* How do we compute the function?
* Thinking in directly in assembly is hard
* Translating pseudocode, on the other hand, is quite straightforward

* C works pretty well

factorial:

3. Variable Mappings

* Need to decide where we store temporary values

* Arguments are given: %rd1, %rsi, %rdx, %rcx, %r8, %r9, then the
stack

' : . Callee must
?
* Do we keep variables in registers: e e
* Callee-save? %r12, %r13, %rlk4, %rl5, %rbx original value
* Caller-save? %r10, %r11 + argument registers before exiting

* Do we use the stack?
Callee can freely
modify the register

factorial:

4. Function Skeleton

Prologue: Epilogue:
e push callee-saves e leave - deallocate stack space
e enter -allocate stack space e Restore (pop) any pushed registers

o stack alignment! e ret -return to call site

4. Function Skeleton

push %ri2
push %ril3
enter $24, $0

leave
pop %rl3
pop %rl2
ret

5. Complete the Body

* Translate your pseudocode into assembly - line by line

* Apply variable mappings

Variables, Temporaries, Assighnment

* Each Cvariable maps to a register or a stack location
(by using enter)

* Temporary results go into registers

* Registers can be shared / reused - keep track carefully

long X 5;

lLong vy X 2 1;

With:
X in %r10 O
y in %rbx

Temporary for x * 2 is %rdx

Variables, Temporaries, Assighnment

* Each Cvariable maps to a register or a stack location
(by using enter)

* Temporary results go into registers

* Registers can be shared / reused - keep track carefully

long X 5;

long y = x * 2 + 1; mov $5, %rio
With:

X in %r10 mov %ri@, %rdx
y in %rbx imulg $2, %rdx

add $1, %rdx
mov %rdx, %rbx

Temporary for x * 2 is %rdx

If statements 1

Variables:

e Xis-8(%rbp)

« Yis-16(%rbp) or,
temporarily, %r10

Variables:

X is -8(%rbp)
y is -16(%rbp) or,
temporarily, %r10

If statements 1

mov -16(%rbp), %rio
cmp %ri10, -8(%rbp)

jge elsel:

movqg $7, -16(%rbp)

elsel:

Variables:

e Xis-8(%rbp)
e VYis-16(%rbp) or,
temporarily, %r10

If statements 2

If statements 2

mov -16(%rbp), %rio
cmp %r10, -8(%rbp)
jge elsel:

movq $7, -16(%rbp)

jmp donel

Variables:
elsel:

e Xis-8(%rbp)
e VYis-16(%rbp) or,
temporarily, %r10

movqg $9, -16(%rbp)

donel:

Do-while loops

do {

X = X
} while (x

Variables:

« Xis-8(%rbp)

Do-while loops

loop:
add $1, -8(%rbp)

do {

« = x cmp $10, -8(%rbp)

} while (x

Variables: j1 loop

« Xis-8(%rbp)

While loops

while (x < 10) {

X X 1;

}

Variables:

e Xis-8(%rbp)

While loops

loop_test:
cmp $10, -8(%rbp)
jge loop_done

while (x < 10) {

X X 1;

}

add $1, -8(%rbp)

Jjmp loop_test

Variables:
loop_done:

e Xis-8(%rbp)

Recursive Functions and the Stack

How to Use Recursion?

* Let's say we want to write a factorial function.

How to program Recursion?

* Let's say we want to write a recursive factorial function.

* ...something like:

long fact(long n) {
if (n 1) {
return 1;

}

return n fact(n 1);

}

Factorial

In general: we need to use the stack to hold on to data when doing
recursive calls.

Follow Design Recipe: Signature

* What are arguments?

* What is returned?

#long fact(long)

fact:

Follow Design Recipe: Pseudocode

* The Clooks good...

long fact(long n) {
if (n 1) {
return 1;

}

return n fact(n 1);

}

Follow Design Recipe: Variable Mappings

* Storing temp variable on the stack

* Returning result in %rax

#long fact(long n)
fact:
n — (-8)%rbp

##t res — %rax

Follow Design Recipe: Function Skeleton

long fact(long n) {
if (n 1) o

#long fact(long n) } return 1;

fact:
#n — (-8)%rbp

res — %rax } return n * fact(n - 1);

enter $16, $0

Follow Design Recipe: Complete the Body

#long fact(long n)
fact:

n — (-8)%rbp
H res — %rax

enter $16, $0

long fact(long n) {
if (n 1) {

}

return 1;

}

return n

fact(n

1);

Follow Design Recipe: Complete the Body

#long fact(long n)
fact:

#n — (-8)%rsp
res — %rax

enter $16, $0

long fact(long n) {
if (n 1) {

}

return 1;

}

return n

fact(n

1);

rax=6

rax=2

rax=1

Stack example: misc/factorial

int fact(int n)

{

b

printf("---In fact(%d)\n", n);
printf("&n is %p\n", &n);

if (n<=1)
return 1;

return fact(n-1) * n;

int main(int argc, char *argv[])
{
if (argc !=2)
{
printf("Usage: fact integer\n");

return O;

}

printf("The factorial of %d is %d\n.",
atoi(argv[1]), fact(atoi(argv[1])));
}

