CS 3650 Computer Systems — Spring 2026

Introduction to C

Week 4

Northeastern
University * Acknowledgements: created based on Mike Shah’s and Ferdinand Vesely’s lecture notes.

Background

Programming language developed by Dennis Ritchie in 1972

A successor language of Bell lab’s programming language “B”

C was intended to make programming Unix easier

Early Unix versions in Assembly

SECOND EDITION

* High-level, compared to assembly THE
* But still low-level conceptual model -
A“‘c \
PROGRAMMING

LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE MALL SOFTWARE S0RS

Northeastern
University

Background

* Types - kind of “strong” but not really

SECOND EDITION

* You manage memory THE

* You can even inline assembly

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENDICE ALl SOFTWARE TS

Northeastern
University

hello world in C

#include <stdio.h>
int main(int argc, char *argv([])

* Compilation: gcc hello.c -o hello {

. ' printf (“hello world!\n”);
* #include <stdio.h> printe (*he

// prints hello world

e imports the library for printf

e Command line arguments
 int argc: number of arguments (> 1)
e char *argv[]: array of string

 ./hello argument test 1
* argc=4,
* argv[0] = “./hello” (includes the path to the binary and the file name)
e argv[l] = “argument”
e argv[2] = “test”
e argv[3] =“1"

Northeastern
University

Other familiar features

* Blocks of scope are delimited by { and }

e Variables are declared at the top of the block before calling other
statements

* Variable declared in the block is only visible in that block and any sub-blocks
* Once the block ends, variable is not visible anymore
* Blocks can be nested

 : isused at the end of a statements

* Functions are declared pretty much like Java methods:
* return_type function_name(argl, arg2, ...)
e E.g.,:int max(int first, int second)
e Functions that don’t return anything have a return type void
e E.g.,:void print_many_ints(int first, int second, int third)

Northeastern
University

Sizes of data types (C compared to assembly)

When in doubt about the size: use sizeof(type)

Note: no Boolean type. 0 or 1

Northeastern
University

Control flows: if

if (condition) {
// do stuff
}

if (condition) {
// do stuff
} else {
// do other stuff

¥

Northeastern
University

Control flows: while

while (condition) {
// do this while condition holds

¥

do {
// do this at least once and then
// keep doing it again while condition holds
} while (condition); // don’t forget the semicolon

Northeastern 10
University

Control flows: for

// 1. run the initializer expression

// 2. if holds go to 3, else go to 6
// 3. do stuff in body

// 4. run the updater expression
//5.Goto 2

// 6. End

for (initializer; ; updater) {

Northeastern
University

11

Operators

* Comparison operators: <, >, <=, >=, ==, I=
e while (a <=b)
* while (a !=b)
e for(i=0;i<10;i++)

* Logical operators: !, &&, ||
e if(x >0 && x <10)
* while(x>0 || y > 0)

Northeastern
University

Continue and break

* You can skip the rest of the current iteration of the innermost loop
with continue

* You can break out of the innermost loop with break

while (x > 0) {
if (x > 100) {
break;

}

it (x > 10) {
// do something 1
continue;

// do something 2

Northeastern
University

13

Control flows: switch

e Condition checks based on matching an expression

switch(expression) {
case constant-expression:
// do something
break; // optional: if you don’t break the next
// block will be executed unconditionally
case constant-expression:
// do something
break;

aefault:
// do something

Northeastern
University

14

Pointers

e DataType * pointer
* int *int_pointer; // pointer to an int
* double *element = NULL; // good practice to make initialize to NULL

* A pointer stores a memory address of a data instance

int main()

{

int a = 10;

int * int pointer; Addr Ox0016 a 20

// currently points to an arbitrary location

int_pointer = &a;

// & returns the address of the variable Addr 0x1234

. : , int_pointer 0x0016
printf (“%p\n”, int pointer);

// *pointer accesses the value
// stored in the memory address

printf (“*%d\n”, *int pointer); Sample Output:
*int pointer = 20; 0x0016
printf (“%p\n”, int pointer); 10
printf (“*%d\n”, *int pointer); 0x0016
printf (“%d\n”, a); 20
return O; 20
}
Northeastern 15

University

Pointer of pointer

int 1 = 42;

int *pi = &i;

int **ppi = π
printf("%d %d %d\n", i,

What should be printed?
42 42 42
ppi = pointer to (address of) pi

*ppi = pointer to (address of) i
**ppi = value of i

Northeastern
University

Addr 0x0016
Addr 0x0020

Addr 0x0030
*pi, **ppi);

[42
pi 0x0016
ppi 0x0020

16

Reason why pointers are considered difficult

Some program languages do not expose memory addresses

Accessing an arbitrary address through pointers causes runtime
errors

 When you pass around pointer variables you will often see this

Memory address is not a value that you directly use in a program
e But it is often more convenient to have access to

Little control over memory addresses (program assigns for you)

* You will only directly assigh NULL or copy an existing address
e.g., a declared variable

 Sometimes you will access a RELATIVE address

Northeastern
University

Arrays

* Arrays are just pointers with some fancy syntax

* There are static (size known at compile-time) and dynamic arrays

First static arrays

float nums[4]; // create an array of 4 floats

These will be stored contiguously in memory

* nums points to the first element, nums|0]

Northeastern
University

18

Arrays

* We can access them individually using indices, starting from O

float nums[4]; // create an array of 4

nums[0] = 0.1;

nums[1] = 3.14;
nums[2] = 1.5;
nums[3] = 3214;

prlntf("an element %f\n", nums[1]);

e Arrays can also be initialized:

float nums[4] = { 0.1, 3.14, 1.5, 3214 };
printf("2nd element: %f\n", nums[1]);

Northeastern
University

19

Arrays

* Pointer-based access

float nums[4] = { 0.1, 3.14, 1.5, 3214 };
printf("2nd element: %f\n", nums[1]);

printf("1st element: %f\n", *nums);

printf("2nd element: %f\n", *(nums+1));
printf§"3rd element: %f\n", *§nums+2g§;
printf("4th element: %f\n", *(nums+3));

Northeastern 20
University

String

* In C (like in Assembly for us), strings are just arrays of characters,
terminated by a 0 byte (also written '\0')

e Relevant functions are defined in <string.h>

e Astring literal "Hello, world!" is just the corresponding array of
characters with an extra char for \0

// msgl and msg2 define identical objects in memory
char msgl[6] = "Hello";

char msg2[6] = { 'H', 'e', '1', '1', 'o', '\@' };

Northeastern 21
University

Dynamic memory allocations

 Memory can be allocated using the library function malloc()
* Itis defined in <stdlib.h>
 |ts single argument is the number of bytes desired
* Returns a pointer to the block of memory (if successful)
* Allocated memory needs to be freed using free()

int *one_ int = malloc(4);
*one_int = 42;

free(one_int);

Northeastern
University

Dynamic memory allocations

* We will mostly use malloc to allocate arrays and structs (below)

int *fifty_ints = malloc(50 * sizeof(int));
for (int 1 = 0; 1 < 50; ++1i) {
fifty_ints[i] = 1 * i;
}
free(fifty ints);

Northeastern
University

23

Pointers and memory management

e Stack vs heap

e Stack memory is automatically managed
(maintains variables in the scope)

- - - - Stack
int addsquare(int first, int second) {
int temp = first + second; a
return (temp * temp); b
C
} first
second
int main() { temp
int a = 1;
int b = 2;

int ¢ = addsquare(a, b);
printf(”%d\n”, c);
return 1;

Northeastern
University

24

Pointers and memory management

e Stack vs heap

* Heap memory is dynamically allocated and you must manage it

void add_elements(struct list *1list) {
int I;
for (I =0; I < 3; I ++) {
struct list elem *elem = malloc(sizeof(
struct list elem));
list _push_back(list, elem);
}

int main() {
struct list my_1list;
list_init(&my_1list);
add_elements(&my_ list);
while (list_size(&my list) > @) {
struct_list elem *elem = list pop front(&my list);
free(elem);

}

return 1;

Northeastern
University

If you forget to delete, memory
space will be wasted and in the
long run, you can run out of
memory space (memory leak)

Stack Heap

| mylist |

(ptr) list
I

25

Structs

Structs are the most useful user-defined data types in C

Think of them as Java classes, but everything is public
e Structs do not have methods

A struct stores multiple values of different types together

It is defined using the struct keyword

struct address {
unsigned int house no;
char street[32];
char city[24];
char state[3];
unsigned int zip;
}; // don’t forget the semicolon.

struct address home, work; // this allocates two
// structs on the stack

Northeastern
University

26

Structs

 To access a field, we use “.”
work.house no = 360;

strcpy(work.street, "Huntington Ave"); // see man 3 strcpy
strcpy(work.city, "Boston");

strcpy(work.state, "MA");

work.zip = 02115;

e Structs can, of course, be nested:

struct person {
char first[32];

char last[32];
struct address home;

¥
They can be passed to and returned from a function:

struct address get address(struct person p) { ... }

Northeastern
University

27

Typedef

Writing out struct every time can be tiring

struct address my_ home;
struct person myself;

struct address get home_ addr(struct person arg);

* Callows us to introduce type synonyms using typedef:

typedef struct person person_t; // now we can use person_t
// to mean struct person

* typedef can be used with any type to make code more readable:
typedef unsigned short age t;

Northeastern
University

28

Pointers to structs

Of course, we can have pointers to structs:
struct person *p; // OR person_t *p;

* We can use the address-of operator & to get the address of a struct:
struct address *current = &work;

struct person *ferd = malloc(sizeof(struct person));

person_t *ferd = malloc(sizeof(person_t));

We can also create arrays of structs:

person_t class[80];
person_t *friends = malloc(5 * sizeof(person_t));

/] ...
for (int 1 = 0; 1 < 5; ++i) {
if (strcmp(friends[i].home.street, "Huntington Ave") == 0) {
printf("%s lives close!\n", friends[i].first);

}

Northeastern
University

We can also allocate memory for structs dynamically, using malloc and sizeof:

29

Pointers to structs

e Often, pointers are used to pass a struct to a function
e This avoids copying the contents into the function’s stack frame

* When accessing fields via a pointer, we use ->

int lives _in_boston(person_t *p) {
return strcmp(p->home.city, "Boston") != 0;
// equivalent to
// return strcmp((*p).home.city, "Boston") != 0;

¥

Northeastern
University

30

Preprocessor

* The C preprocessor (CPP) is a separate phase run at the very
beginning of the compilation process

* |tis basically just a text processing engine that modifies the source
text based on preprocessor directives

* The main job of CPP is to:

* Include the requested header files

* Define “global constants” — IMPORTANT: these are just textual
macros, that is, pieces of C code that will get spliced wherever the
constant name is mentioned

* Choose which parts of code to include for compilation based on
various conditions

Northeastern
University

Preprocessor: #define

 This directive is used to define a textual macro

* The macro can be a constant macro or a parametrized macro

#define COUNT 100
#define COURSE "Computer Systems™

* This will define the macros COUNT and COURSE;

* Everywhere else where COUNT is mentioned, it will be replaced
with 100, and COURSE will be replaced with "Computer Systems"

Northeastern
University

32

Preprocessor: #define

Note, that the expression is simply substituted for the macro

* |t does not get evaluated at the definition site

Hence there is a subtlety that one has to keep in mind:
Consider,

#define X 10 + 2
int a = X; // expands to 10 + 2
int b = 3 * X; // expands to 3 * 10 + 2
//this might not be what we expect

The solution is to always put an expression in parentheses:

#define X (10 + 2)
int b = 3 * X; // expands to 3 * (10 + 2)

Northeastern
University

Preprocessor: #define

* Parametric (“function-like”) Macros
* We can also define macros with arguments using #define
* These look like function calls, but they are expanded at compile-time
* Example,
#define max(a, b) (a>b ? a: b)
printf("%d\n", max(3, 4));

* The argument to a macro does not get evaluated before being used in the
macro, so we have a similar problem as above:

#define dbl(x) (2 * x)
printf("%d\n", dbl(10 + 1)); // expands to 2 * 10 + 1,
// thus prints 21, not 22!

* So any argument use in a macro body should be enclosed in ():

#define max(a, b) ((a) > (b) ? (a) : (b))
#define dbl(x) (2 * (x))

Northeastern
University

34

Preprocessor: #define

Another caveat: consider the following:
#define foomacro(x) ((x) + (x))

int foofun(int x) { return x + x; }

Although both seem to be computing the same result, they will
behave differently if the expression passed in has side-effects:

int x = 10;

printf("%d\n", foomacro(++x)); // will likely print 23
X = 10;

printf("%d\n", foofun(++x)); // prints 22

Why?

Note: a good modern C compiler will usually warn you about this

Northeastern 35
University

Preprocessor: #include

* The #include directive performs a textual inclusion of the given file

* Generally, only ever use this for headers - .h files
#include <stdio.h>

* DO NOT INCLUDE C FILES

* Headers contain
e Declarations and definitions of functions
* Macros
 Sometimes also global variables

Northeastern
University

Preprocessor: #if/#ifdef/#ifndef/#elif/#else

* These are compile-time conditionals that hide or expose parts of
the source file from or to the compiler

* Example:

#ifdef UNIX
PATH_SEPARATOR "/"

#elif
et defined WINDOWS PATH_SEPARATOR "\\"

#endif
e Other example:

for (int 1 = @; 1 < length; i++) {
sum += array[i];
#if DEBUG_LEVEL »>= 1
printf("array[%d] = %d, sum = %d\n", i, array[i], sum);
#endif

Northeastern
University

37

Header files

e Commonly include
* Function declarations
int max(int a, int b);
int min(int a, int b);
* Structs
* Macros

Northeastern
University

mycode.h

#ifndef _ MYCODE H
#define _ MYCODE H
struct my_ struct {

int x;

int y;
¥
int my_ function(

struct my struct *my_arg);

#tendif

mycode.c

#include “mycode.h”

int my_ function(
struct my struct *my_arg)

{
int z;
// do something
return z;

}

38

Separate Compilation

* my_max.h
int my_max(int a, int b);
* my_max.c
int my_max(int a, int b) {return ((a>b) ?a:b);}
* my_min.h
int my_min(int a, int b);
* my_min.c
int my_min(int a, int b) {return ((a<b)?a:b);}

* main.c
#include “my_max.h” gCC —C My_max.c —0 my_max.o

#include-“my_min.h” gcc—Cc my_min.c—0 my_min.o
it main(void) { gCcc —C main.c —0 main.o

Double quote intx = 1; gCC my_max.0 my_min.o main.o -o my_prog
to include :ﬂw:%
custom my_min'(x, v); gCcc —C my_max.c my_min.c main.c
header files P;}[’amaa‘;(y' 2); gcc my_max.o my_min.o main.o —o my_prog
}

gCC My_max.c my_min.c main.c —o0 my_prog

Northeastern
University

Using functions and variables from different files

* my_max.c

int my_max(int a, int b) { return ((a >b) ?a:b); }

* my_min.c

int my_min(int a, int b) { return ((a <b) ?a: b); }

°* main.c

extern int my_max(int a, int b);
extern int my _min(int a, int b);

int main(void) {

int x
int y
int 4
my min
max
refurn

Northeastern
University

~~~I 1l 1

1;
2;
3;

i

gCC —C My_max.c —0 my_max.o
gCcC—C mMy_min.c —0 my_min.o

gCC —C main.c —0 main.o

gCC My_max.0 my_min.o main.o -0 my_prog

gCC —C My_max.c my_min.c main.c
gCC My_max.0 my_min.o main.o —0 my_prog

gCC My_max.c my_min.c main.c —o0 my_prog

40



Global variables

Global variables can be declared outside of functions

They can be accessed by anywhere in the program

Pros
e Convenient because all functions can access

* Cons
e Can accidentally change
* Abusing global variables can easily introduce bugs

main.c inc_dec.c

int global_var = 100; extern int global_var;
void print_global var() {

printf(“%d\n”, global var);

void inc_global var() { global var++; }

void dec_global var() { global var--; }

}

int main(void) {
// do something
return 0;

¥

Northeastern
University




