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Background

• Programming language developed by Dennis Ritchie in 1972
• A successor language of Bell lab’s programming language “B”
• C was intended to make programming Unix easier
• Early Unix versions in Assembly
• High-level, compared to assembly
• But still low-level conceptual model
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Background

• Types - kind of “strong” but not really
• You manage memory
• You can even inline assembly
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hello world in C
• Compilation: gcc hello.c -o hello
• #include <stdio.h> 

• imports the library for printf

• Command line arguments
• int argc: number of arguments (> 1)
• char *argv[]: array of string

• ./hello argument test 1
• argc= 4, 
• argv[0] = “./hello” (includes the path to the binary and the file name)
• argv[1] = “argument”
• argv[2] = “test”
• argv[3] = “1”

#include <stdio.h>
int main(int argc, char *argv[])
{

printf(“hello world!\n”);
return 1;}

// prints hello world
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Other familiar features
• Blocks of scope are delimited by { and }

• Variables are declared at the top of the block before calling other 
statements

• Variable declared in the block is only visible in that block and any sub-blocks
• Once the block ends, variable is not visible anymore
• Blocks can be nested

• ; is used at the end of a statements

• Functions are declared pretty much like Java methods:
• return_type function_name(type1 arg1, type2 arg2, ...)

• E.g.,: int max(int first, int second)
• Functions that don’t return anything have a return type void

• E.g.,: void print_many_ints(int first, int second, int third)
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Sizes of data types ( C compared to assembly)
When in doubt about the size: use sizeof(type)
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C Declaration Intel Data Type Assembly-code 
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

Note: no Boolean type.  0 or 1 



Control flows: if

if (condition) {
// do stuff

} 

if (condition) { 
// do stuff 

} else { 
// do other stuff 

}
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Control flows: while
while (condition) { 

// do this while condition holds 
}

do { 
// do this at least once and then 
// keep doing it again while condition holds 

} while (condition); // don’t forget the semicolon
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Control flows: for
// 1. run the initializer expression 
// 2. if condition holds go to 3, else go to 6 
// 3. do stuff in body 
// 4. run the updater expression 
// 5. Go to 2 
// 6. End 

for (initializer; condition; updater) { 

}

11



Operators
• Comparison operators: <, >, <=, >=, ==, !=

• while (a <= b)
• while (a != b)
• for (i = 0; i < 10; i++)

• Logical operators: !, &&, ||
• if(x > 0 && x <10) 
• while(x > 0 || y > 0) 
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Continue and break
• You can skip the rest of the current iteration of the innermost loop 

with continue
• You can break out of the innermost loop with break

while (x > 0) {
if (x > 100) {

break;
}
if (x > 10) {

// do something 1
continue;

}
// do something 2

}

13



Control flows: switch
• Condition checks based on matching an expression 

switch(expression) {
case constant-expression:

// do something
break; // optional: if you don’t break the next

// block will be executed unconditionally
case constant-expression:

// do something
break; 

…  
default: 

// do something
}
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Pointers
• DataType * pointer

• int *int_pointer; // pointer to an int
• double *element = NULL;  // good practice to make initialize to NULL

• A pointer stores a memory address of a data instance
int main() 
{

int a = 10;
int * int_pointer; 

// currently points to an arbitrary location
int_pointer = &a; 

// & returns the address of the variable
printf(“%p\n”, int_pointer);    

// *pointer accesses the value 
// stored in the memory address

printf(“%d\n”, *int_pointer);
*int_pointer = 20;
printf(“%p\n”, int_pointer);
printf(“%d\n”, *int_pointer);
printf(“%d\n”, a);
return 0;

}

Sample Output:
0x0016
10
0x0016
20
20

a

int_pointer

Addr 0x0016

Addr 0x1234 ?0x0016

?1020
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Pointer of pointer

int i = 42; 
int *pi = &i; 
int **ppi = &pi; 
printf("%d %d %d\n", i, *pi, **ppi);

What should be printed?

42 42 42

ppi = pointer to (address of) pi
*ppi = pointer to (address of) i
**ppi = value of i
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i

pi

Addr 0x0016

Addr 0x0020

42

ppiAddr 0x0030

?

?

0x0016

0x0020



Reason why pointers are considered difficult
• Some program languages do not expose memory addresses

• Accessing an arbitrary address through pointers causes runtime 
errors
• When you pass around pointer variables you will often see this

• Memory address is not a value that you directly use in a program
• But it is often more convenient to have access to

• Little control over memory addresses (program assigns for you)
• You will only directly assign NULL or copy an existing address 

e.g., a declared variable
• Sometimes you will access a RELATIVE address
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Arrays
• Arrays are just pointers with some fancy syntax
• There are static (size known at compile-time) and dynamic arrays

• First static arrays

float nums[4]; // create an array of 4 floats

• These will be stored contiguously in memory
• nums points to the first element, nums[0]
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Arrays
• We can access them individually using indices, starting from 0

float nums[4]; // create an array of 4
nums[0] = 0.1;
nums[1] = 3.14;
nums[2] = 1.5;
nums[3] = 3214;
printf("2nd element: %f\n", nums[1]);

• Arrays can also be initialized:

float nums[4] = { 0.1, 3.14, 1.5, 3214 };
printf("2nd element: %f\n", nums[1]);
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Arrays
• Pointer-based access

float nums[4] = { 0.1, 3.14, 1.5, 3214 };
printf("2nd element: %f\n", nums[1]);

printf("1st element: %f\n", *nums);
printf("2nd element: %f\n", *(nums+1));
printf("3rd element: %f\n", *(nums+2));
printf("4th element: %f\n", *(nums+3));
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String
• In C (like in Assembly for us), strings are just arrays of characters, 

terminated by a 0 byte (also written '\0')

• Relevant functions are defined in <string.h> 

• A string literal "Hello, world!" is just the corresponding array of 
characters with an extra char for \0

// msg1 and msg2 define identical objects in memory
char msg1[6] = "Hello"; 

char msg2[6] = { 'H', 'e', 'l', 'l', 'o', '\0' };
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Dynamic memory allocations
• Memory can be allocated using the library function malloc()

• It is defined in <stdlib.h>
• Its single argument is the number of bytes desired
• Returns a pointer to the block of memory (if successful)
• Allocated memory needs to be freed using free()

int *one_int = malloc(4);

*one_int = 42;

free(one_int);
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Dynamic memory allocations
• We will mostly use malloc to allocate arrays and structs (below)

int *fifty_ints = malloc(50 * sizeof(int)); 

for (int i = 0; i < 50; ++i) {

fifty_ints[i] = i * i;

} 

free(fifty_ints);
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Pointers and memory management
• Stack vs heap

• Stack memory is automatically managed 
(maintains variables in the scope)

int addsquare(int first, int second) {
int temp = first + second;
return (temp * temp);

}

int main() {
int a = 1;
int b = 2;
int c = addsquare(a, b);
printf(”%d\n”, c);
return 1;

}

a
b
c

first
second
temp

Stack 
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Pointers and memory management
• Stack vs heap

• Heap memory is dynamically allocated and you must manage it
void add_elements(struct list *list) {

int I;

for (I = 0; I < 3; I ++) {

struct list_elem *elem = malloc(sizeof(

struct list_elem));

list_push_back(list, elem);

}

}

int main() {

struct list my_list;

list_init(&my_list);

add_elements(&my_list);

while (list_size(&my_list) > 0) {

struct_list_elem *elem = list_pop_front(&my_list);

free(elem);

}

return 1;

}

mylist

(ptr) list
I

(ptr) elem list_elem
list_elem
list_elem

If you forget to delete, memory 
space will be wasted and in the 
long run, you can run out of 
memory space (memory leak)

(ptr) elem

Stack Heap 
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Structs
• Structs are the most useful user-defined data types in C
• Think of them as Java classes, but everything is public 

• Structs do not have methods
• A struct stores multiple values of different types together
• It is defined using the struct keyword

struct address {
unsigned int house_no;
char street[32];
char city[24];
char state[3];
unsigned int zip; 

}; // don’t forget the semicolon.

struct address home, work;  // this allocates two
// structs on the stack
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Structs
• To access a field, we use “.”

work.house_no = 360; 
strcpy(work.street, "Huntington Ave"); // see man 3 strcpy
strcpy(work.city, "Boston"); 
strcpy(work.state, "MA"); 
work.zip = 02115;

• Structs can, of course, be nested:
struct person {

char first[32];
char last[32];
struct address home; 

};

They can be passed to and returned from a function:
struct address get_address(struct person p) { ... }
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Typedef
Writing out struct every time can be tiring

struct address my_home;

struct person myself;

struct address get_home_addr(struct person arg);

• C allows us to introduce type synonyms using typedef:
typedef struct person person_t; // now we can use person_t

// to mean struct person

• typedef can be used with any type to make code more readable:
typedef unsigned short age_t;
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Pointers to structs
• Of course, we can have pointers to structs:

struct person *p; // OR person_t *p;

• We can use the address-of operator & to get the address of a struct:
struct address *current = &work;

• We can also allocate memory for structs dynamically, using malloc and sizeof:
struct person *ferd = malloc(sizeof(struct person));

person_t *ferd = malloc(sizeof(person_t));

• We can also create arrays of structs:
person_t class[80];
person_t *friends = malloc(5 * sizeof(person_t));
// ...
for (int i = 0; i < 5; ++i) {

if (strcmp(friends[i].home.street, "Huntington Ave") == 0) {
printf("%s lives close!\n", friends[i].first);

} 

}
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Pointers to structs
• Often, pointers are used to pass a struct to a function

• This avoids copying the contents into the function’s stack frame

• When accessing fields via a pointer, we use ->

int lives_in_boston(person_t *p) { 
return strcmp(p->home.city, "Boston") != 0; 
// equivalent to 
// return strcmp((*p).home.city, "Boston") != 0; 

}
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Preprocessor
• The C preprocessor (CPP) is a separate phase run at the very 

beginning of the compilation process

• It is basically just a text processing engine that modifies the source 
text based on preprocessor directives

• The main job of CPP is to:
• Include the requested header files
• Define “global constants” – IMPORTANT: these are just textual 

macros, that is, pieces of C code that will get spliced wherever the 
constant name is mentioned

• Choose which parts of code to include for compilation based on 
various conditions
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Preprocessor: #define
• This directive is used to define a textual macro
• The macro can be a constant macro or a parametrized macro

#define COUNT 100
#define COURSE "Computer Systems"

• This will define the macros COUNT and COURSE; 

• Everywhere else where COUNT is mentioned, it will be replaced 
with 100, and COURSE will be replaced with "Computer Systems"
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Preprocessor: #define
• Note, that the expression is simply substituted for the macro 
• It does not get evaluated at the definition site
• Hence there is a subtlety that one has to keep in mind:

Consider,
#define X 10 + 2 
int a = X;     // expands to 10 + 2
int b = 3 * X; // expands to 3 * 10 + 2 

//this might not be what we expect

• The solution is to always put an expression in parentheses:
#define X (10 + 2) 
int b = 3 * X; // expands to 3 * (10 + 2)
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Preprocessor: #define
• Parametric (“function-like”) Macros

• We can also define macros with arguments using #define
• These look like function calls, but they are expanded at compile-time
• Example,

#define max(a, b) (a > b ? a : b) 
printf("%d\n", max(3, 4));

• The argument to a macro does not get evaluated before being used in the 
macro, so we have a similar problem as above:

#define dbl(x) (2 * x) 
printf("%d\n", dbl(10 + 1)); // expands to 2 * 10 + 1,

// thus prints 21, not 22!

• So any argument use in a macro body should be enclosed in ():
#define max(a, b) ((a) > (b) ? (a) : (b))
#define dbl(x) (2 * (x))
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Preprocessor: #define
• Another caveat: consider the following:

#define foomacro(x) ((x) + (x)) 
int foofun(int x) { return x + x; }

• Although both seem to be computing the same result, they will
behave differently if the expression passed in has side-effects:
int x = 10;
printf("%d\n", foomacro(++x)); // will likely print 23
x = 10;
printf("%d\n", foofun(++x)); // prints 22

• Why?

• Note: a good modern C compiler will usually warn you about this
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Preprocessor: #include
• The #include directive performs a textual inclusion of the given file

• Generally, only ever use this for headers - .h files
#include <stdio.h>
• DO NOT INCLUDE C FILES

• Headers contain 
• Declarations and definitions of functions 
• Macros
• Sometimes also global variables
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Preprocessor: #if/#ifdef/#ifndef/#elif/#else

• These are compile-time conditionals that hide or expose parts of 
the source file from or to the compiler

• Example:
#ifdef UNIX

PATH_SEPARATOR "/"
#elif

defined WINDOWS PATH_SEPARATOR "\\"
#endif

• Other example:
for (int i = 0; i < length; i++) {

sum += array[i]; 
#if DEBUG_LEVEL >= 1
printf("array[%d] = %d, sum = %d\n", i, array[i], sum); 
#endif

}
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Header files
• Commonly include 

• Function declarations 
int max(int a, int b);
int min(int a, int b);

• Structs
• Macros
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#ifndef __MYCODE_H__
#define __MYCODE_H__
struct my_struct {

int x;
int y;

};
int my_function(

struct my_struct *my_arg);

#endif

#include “mycode.h”

int my_function(
struct my_struct *my_arg) 

{
int z;
// do something
return z;

}

mycode.h

mycode.c



Separate Compilation
• my_max.h

int my_max(int a, int b);
• my_max.c

int my_max(int a, int b) { return ((a > b) ? a : b); }
• my_min.h

int my_min(int a, int b);
• my_min.c

int my_min(int a, int b) { return ((a < b) ? a : b); }
• main.c

#include “my_max.h”
#include “my_min.h”
int main(void) {

int x = 1; 
int y = 2; 
int z = 3; 
my_min(x, y);
my_max(y, z);
return 0;

}
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gcc –c my_max.c –o my_max.o
gcc –c my_min.c –o my_min.o
gcc –c main.c –o main.o
gcc my_max.o my_min.o main.o -o my_prog

gcc my_max.c my_min.c main.c –o my_prog

gcc –c my_max.c my_min.c main.c
gcc my_max.o my_min.o main.o –o my_prog

Double quote 
to include 

custom 
header files



Using functions and variables from different files

• my_max.c
int my_max(int a, int b) { return ((a > b) ? a : b); }

• my_min.c
int my_min(int a, int b) { return ((a < b) ? a : b); }

• main.c

extern int my_max(int a, int b);
extern int my_min(int a, int b);
int main(void) {

int x = 1;
int y = 2;
int z = 3;
my_min(x, y);
my_max(y, z);
return 0;

}
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gcc –c my_max.c –o my_max.o
gcc –c my_min.c –o my_min.o
gcc –c main.c –o main.o
gcc my_max.o my_min.o main.o -o my_prog

gcc my_max.c my_min.c main.c –o my_prog

gcc –c my_max.c my_min.c main.c
gcc my_max.o my_min.o main.o –o my_prog



Global variables
• Global variables can be declared outside of functions
• They can be accessed by anywhere in the program
• Pros

• Convenient because all functions can access

• Cons
• Can accidentally change
• Abusing global variables can easily introduce bugs
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int global_var = 100;
void print_global_var() {

printf(“%d\n”, global_var);
}
int main(void) {
// do something

return 0;
}

extern int global_var;

void inc_global_var() { global_var++; }

void dec_global_var() { global_var--; }

main.c inc_dec.c


