
Processes

Week 5

CS 3650 Computer Systems – Spring 2026

* Acknowledgements: created based on Professors Wilson, Vesely, Shah, Park, and Ji-Yong’s lecture slides for the same course.

Processes

2

Diving into the Operating Systems
• We have been developing our knowledge of tools to prepare for

the exploration of the Operating System
• Assembly
• C

• Today we will dive into the OS itself

• What we learned so far will be helpful understanding the OS
• Registers and instruction concepts
• Memory as a linear array and ways to work with memory addresses
• C is at the core of many common OSes

3

OS: Virtualization + Abstraction
• The OS is a (software) land of magic and illusions
• OS makes a computer “easy” to use
• OS hides overwhelming complexities of hardware behind an API

• This is abstraction

• OS creates the illusion of an ideal, general, and powerful machine
• This is virtualization

• We will start by looking at how the processor virtualizes the CPU
• Then the process and other abstractions the OS uses

4

Recommended Reading
• The OSTEP book: up to Ch. 3-6
• Online: https://pages.cs.wisc.edu/~remzi/OSTEP/
• Hard copy: Lulu or Amazon

5

https://pages.cs.wisc.edu/~remzi/OSTEP/

Running Dynamic Code
• Basic function of an OS is to execute and manage code dynamically

• For example,
• A command issued at a command line terminal
• An icon double clicked from the desktop
• Jobs/tasks run as part of a batch system

• A process is the basic unit of a program in execution

6

Programs and Processes

7

Program
An executable

file in long-term
storage

Process
The running

instantiation of a
program, stored in

RAM

One-to-many
relationship

between program
and processes

How to Run a Program?

• How does the OS turn a double-clicked executable file into a
process?

• What information must the executable file contain to run as a
program?

8

Program Formats
• Programs obey specific file formats

• CP/M (control program monitor) and DOS (disk operating system)
: COM executables (*.com)

• DOS: MZ executables (*.exe)
• Named after Mark Zbikowski, a DOS developer

• Windows Portable Executable (PE, PE32+) (*.exe)
• Modified version of Unix COFF executable format
• PE files start with an MZ header.

• Unix/Linux: Executable and Linkable Format (ELF)

• Mac OSX: Mach object file format (Mach-O)

9

ELF File Format
• Spec: https://refspecs.linuxfoundation.org/elf/elf.pdf

• ELF Header
• Contains compatibility info
• Entry point of the executable code

• Program header table
• Lists all the segments in the file
• Used to load and execute the program

• Section header table
• Used by the linker

10

https://refspecs.linuxfoundation.org/elf/elf.pdf

ELF Header Example
$ gcc –g –o test test.c
$ readelf --header test
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x400460
Start of program headers: 64 (bytes into file)
Start of section headers: 5216 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 9
Size of section headers: 64 (bytes)
Number of section headers: 36
Section header string table index: 33

11

The Program Loader
• OS functionality that loads programs into memory, creates

processes
• Places segments into memory
• Loads necessary dynamic libraries
• Performs relocation
• Allocated the initial stack frame
• Sets EIP/RIP to the program’s entry point

• Process is a live program execution
context or basic unit of execution

12

ELF Header

.text

.data

.rodata

.bss

ELF Program

Memory

.text
.data

.rodata

.bss

Heap

Stack
RSP

RIP

Warmup
• How many processes do you have open at any given time?

• 10s, 100s? More!? :)

13

First: Instruction Execution

• Code in an executable is a sequence of instructions
• CPU runs an instruction at a time
• This is done in a fetch-decode-execute cycle
• If you have 4 cores, your processor can do

4 FDE cycles at a time
• But how do we see ~100s of programs

running on 4 cores?
• What about a single core CPU?

MAR: holds address of current instruction, MDR: holds contents of address in MAR
CIR: stores current instruction, so not overwritten by additional fetches to MBR/MDR

14

From the warm up
• Many programs are running, but only 8 CPUs that do the work

15

The Problem: So how does our
Operating System provide the illusion of
100s of processes running at once?

Virtualization with time sharing
• The Operating System (OS) runs one process at a time,

• That executes one instruction a time
• After some amount of time the process stops or finishes
• Then the OS starts another process
• Eventually the same process will run again and continue where it left off
• Repeat

• This concept is known as time sharing
• Are the two states, Running and Ready, enough?

16

Process States
• What if the process needs to read/write to disk or perform a

network request? Any problems?
• These operations take (comparatively) long to complete
• Keeping process state to Running?

• Hogs the CPU just waiting for disk/network access to complete
• Keeping process state to Ready?

• Might not be ready to run when its turn comes
• Asking it to run may be waste of time

• Solution?
• Introduce a 3rd state, Blocked

• Meaning: the process requested some I/O operation
and cannot run until that operation is completed

17

Process States
• Each process can be in one of several states
• The OS schedules the state the process is in
• Typically, these are:

• Running: the process is executing on the CPU
• Ready: the process is ready to execute,

but the OS did not choose to run it
• Blocked - the process issued some blocking operation

• I/O is a common blocking operation

18

Then how does OS switch processes?

19

OS Challenges to Virtualization
• Performance

• How to implement virtualization without excessive overhead

• Control
• How to run multiple processes without losing control over the CPU?
• Without OS control, a process

• could occupy the CPU and run forever
• access memory it does not have access impacting safety and security

20

Switching between processes
• Switching between processes is a challenge, because

If the CPU is running a program, then the OS is not running

• If OS is not running, then how can it switch out/in processes?
• Think about how you would design the OS!

21

When Do You Switch Processes?
• To share CPU between multiple processes, control must

eventually return to the OS
• When should this happen?
• What mechanisms implements the switch from user process

back to the OS?

• Four approaches:
1. Voluntary yielding
2. Switch during API calls to the OS
3. Switch on I/O
4. Switch based on a timer interrupt

22

Voluntary Yielding
• Idea: processes must voluntary give up control by calling an OS API,

e.g. thread_yield()

• Problems?
• Misbehaving or buggy apps may never yield

e.g., while (1) { //do something without yielding }

• No guarantee that apps will yield in a reasonable amount of time

• Waste of CPU resources, i.e. what if a process is idle-waiting on I/O?

23

Interjection on OS APIs
• Idea: whenever a process calls an OS API, this gives the OS an

opportunity to context switch
• E.g. printf(), fopen(), socket(), etc…

• The original Apple Macintosh used this approach
• Cooperative multi-tasking

• Problems?
• Misbehaving or buggy apps may never yield
• Some normal apps don’t use OS APIs for long periods of time

• E.g. a long, CPU intensive matrix calculation

24

Switching on I/O
• Idea: when one process is waiting on I/O, switch to another process

• I/O APIs already go through the OS, so context switching is easy

• Problems?
• Some apps don’t have any I/O for long periods of time

25

Preemptive Switching
• So far, processes will not switch to another until an action is taken

• e.g. an API call or an I/O interrupt

• Idea: use a timer to force context switching at set intervals
• Timer is running at a fixed frequency to measure how long a process

has been running
• If it’s been running for some max duration (scheduling quantum), the

handler switches to the next process

• Problems? Who will trigger the timer
• Requires hardware support (a programmable timer)

• Thankfully, this is built-in to most modern CPUs

26

Mechanisms for switching:
Exceptional Control Flow

27

Remember
• Computers only really do one thing; they execute one instruction

one after another
• Based on the order of instructions executing in your program.
• Your programs follow some control flow based on jumps and

branches (and calls and returns)
• This is based on your programs state.

• However, sometimes we want to react based on the system state
• E.g., you hit Ctrl+C on the keyboard in your terminal and execution

stops.

28

Exceptional Control Flow Mechanisms
• Low level mechanism

• Exceptions
• Change in control flow in response to a system event.
• This is implemented in hardware and OS software

29

Exceptional Control Flow Mechanisms
• High level mechanisms

• Process context switch
• e.g. It appears that multiple programs are running at once on your OS,

but remember only one instruction at a time.
• Context switches provide this illusion

• Signals
• Implemented by OS software

30

Exceptions
• An exception is a transfer of control to the OS kernel

• The kernel is the memory-resident part of the OS
• Meaning OS lives in memory forever: we do not modify this!

• Examples of exceptions we may be familiar with:
• Divide by 0, arithmetic overflow, or typing Ctrl+C

• How does the OS know how to handle the exception?

31

Exception Tables
• Somewhere in the OS, a table exists with different exceptions.

• Think of it like a giant switch or many if else-if statements.

• This is part of a kernel that you cannot modify.
• This code is in a “protected region” of memory

• For each exception, there is one way to handle it
(i.e., “exception handlers”)

32

Our favorite: Invalid Memory Reference
• That is, the segmentation fault

• OS sends signal SIGSEGV to our user process
• This time the program gets terminated.

33

Exceptional Control Flow Taxonomy

34

Usually software-
driven exceptions

Usually,
hardware-driven

exceptions

Asynchronous Exceptions (Interrupts)

• Caused by events external to processor
• I.e., not from the result of an instruction the user wrote
• E.g.

• Timer interrupts scheduled to happen every few milliseconds
• A kernel can use this to take back control from a program/user

• Some network data arrives (I/O)
• A nice example is while reading from disk

• The processor can start reading, then hop over and perform some other
tasks until memory is actually fetched.

35

Synchronous Exceptions

• Events caused by executing an instruction
• Traps

• Intentionally done by the user
• e.g. system calls, breakpoints (like in gdb)

• Returns control to the next instruction
• Faults

• Unintentional, but possibly recoverable
• e.g. page faults (we’ll learn more about soon), floating point exceptions

• Handled by re-executing current instruction or aborting execution
• Aborts

• Unintentional and unrecoverable
• e.g. illegal instruction executed, parity error

36

https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/RAM_parity

Exceptional Control Flow Taxonomy

37

Okay, so Interrupts, Traps,
Faults, and Aborts are our
tools to change control
flow within a process

System calls

38

Different privilege levels
• Most modern CPUs support protected mode
• x86 CPUs support three rings with different privileges

• Ring 0: OS kernel
• Ring 1, 2: device drivers
• Ring 3: userland

• Most OSes only use rings 0 and 3

Ring 0
Kernel

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

39

Dual-Mode Operation
• Ring 0: kernel/supervisor mode

• Execution with the full privileges of the hardware
• Read/write to any memory, access any I/O device, read/write any

disk sector, send/read any packet

• Ring 3: user mode or “userland”
• Limited privileges
• Only those granted by the operating system kernel

40

Protected Features
• What system features are impacted by protection?

• Privileged instructions
• Only available to the kernel

• Limits on memory accesses
• Prevents user code from overwriting the kernel

• Access to hardware
• Only the kernel may directly interact with peripherals

• Programmable Timer Interrupt
• May only be set by the kernel
• Used to force context switches between processes

41

System Calls
• Syscall is the lowest level of interaction with an operating system

from a C programmer
• A user program can ask the OS for services that the OS manages

• You may have used ‘_exit’ in your assignment
• Anything else you can think of?

42

Changing Modes
• Applications often need to access the OS

• i.e. system calls
• Writing files, displaying on the screen, receiving data from the

network, etc…

• But the OS is ring 0, and apps are ring 3
• How do apps get access to the OS?

• Apps invoke system calls with an interrupt
• E.g. int 0x80

• int causes a mode transfer from ring 3 to ring 0

43

System Call Example

44

IVT

Physical
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes E/RIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

3. OS executes the system call
• Save the processes state
• Use E/RAX to locate the system call
• Execute the system call
• Restore the processes state
• Put the return value in E/RAX

4. Return to the process with iret
• Pops E/RIP, CS, and EFLAGS
• Switches from ring 0 to 3

Syscall Table

printf()

OS Code

RIP

Note: this shows a physical memory
layout. The user program thinks it owns
the entire memory space (the diagram

that we saw in previous lectures).

System Calls and arguments
• Helpful webpage with syscalls and arguments

• https://filippo.io/linux-syscall-table/

45

https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/
https://filippo.io/linux-syscall-table/

Opening a File
• rax holds the system call # that we want to pass.

• Other arguments accessed as follows

46

Opening a File | Illustration

47

Processes
STOP HERE

48

The Process
• A process is alive, a program is dead. Long live the process!

• (A program is just the code.)

• Processes are organized by the OS using two key
abstractions

• Logical Control Flow
• Programs “appear” to have exclusive control over the CPU
• Done by “context switching”

• Private Address Space
• Each program “appears” to have exclusive use of main

memory
• Provided by mechanism called virtual memory

49

A single
process

Multiprocessing: Illusion
• When running processes, it appears that we are running many

different tasks at the same time
• It also appears that our memory is neatly organized.

• Note from this diagram we see every process has its own
• stack
• heap
• data
• code
• registers

50

Process NProcess 2Process 1

Multiprocessing: Reality
• Remember, at any time, only one processor is really running code
• Program execution is interleaved
• OS manages memory addresses in virtual memory
• OS stores the saved registers for different programs.

• (At some point in this class, you probably figured 16 registers is not
enough for all of the processes that you were running.)

• When we switch which process is executing: this is a context switch

51

Context switch: a high-level view

• Save register values to memory
• Move on to the next process

• Point to the stack of the next process
• Restore saved register values

• Start running executing the next process

52

Context
Switch

Storing Register Context | Data Structures

• In order to store the state of
the registers, your OS will keep
track of this information

• Typically there is a process list,
and the list contains
information like the registers.

• To the right is a struct for the
xv6 operating system storing
32-bit registers. We will use
xv6 later in the semester.

54

Storing Process Information | Data Structures

• Additional information such as
the process state is stored by
the OS.

• proc is the data structure
which stores information about
each process (linux uses
task_struct)

• To the right is the struct
proc for the xv6 operating
system

55

Storing Process Information | Data Structures

• Additional information such as
the process state is stored by
the OS.

• proc is the data structure
which stores information about
each process (linux uses
task_struct)

• To the right is the struct
proc for the xv6 operating
system

56

Process state

Registers that we saw
earlier

Process id

man proc

57

top

• top is a program that will show linux processes that are running
• Top shows all of the processes running on a system
• Intuitively, it must be possible for a machine to host multiple

processes, we do so when we ssh.

58

htop

• htop is another program to show running processes
• It shows cores and their load
• It also shows the process tree (process / subprocess relationships)
• It can be scrolled left/right and up/down

59

Viewing processes (Like we did with top or system monitor)

• proc itself is like a filesystem
• (We’ll talk more about everything in Unix being viewed as a file).

• We can navigate to it with cd /proc then list all of the processes.

60

man ps | Run ps -ef

• wAnother way to view actively running processes is ps
• -ef means view all of the processes

61

Gathering more information from proc

• We can run cat /proc/[process_id]/status to output status
information from proc

• Try some of the examples below in your environment (some may
be admin restricted):
https://www.networkworld.com/article/2693548/unix-viewing-
your-processes-through-the-eyes-of-proc.html

62

https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html
https://www.networkworld.com/article/2693548/unix-viewing-your-processes-through-the-eyes-of-proc.html

Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent:
• Which are sequential?

• Sequential:

63

Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B
• Which are sequential?

• Sequential:

64

Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B, A&C
• Which are sequential?

• Sequential:

65

Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B, A&C
• Which are sequential?

• Sequential: B &C

66

Context Switching Illustration

• Processes are managed by a shared chunk of memory-resident OS
code called the kernel

• The kernel is not a separate process itself, but runs as part of other
existing processes

• Context Switches pass the control flow from one process to
another

• Note how going from A to B (and B to A) requires some kernel code
to be executed

67

Process Control

68

Creating a Process
• When we want to create a new process, we can do so from our

parent process using the fork() command.
• This creates a new child process that runs.

• Conceptually, this new child is a clone of itself

• int fork(void)
• Returns 0 to the child process,

Returns child’s PID to the parent process
• PID = process ID

• Child is almost identical to parent
• Child gets a copy (that is separate) to the parent’s virtual address space
• Child gets a copy of open file descriptors
• Child has a different PID than parent.

• Note: Fork actually returns twice (once to the parent, and once to the
child), even though it is called once.

69

man fork

70

Conceptual View of fork() | The before and after

71

Additional Process commands

• int exec(const char *pathname, char *argv[], …)
• System call to change the program being run by the current process

• wait() – system call to wait for a process to finish
• signal() – system call to send a notification to another process

• pid_t getpid(void)
• Return PID of the current process

• pid_t getppid(void)
• Returns PID of parent process

• Note that when we create a process with fork
• The parent child relationship, makes a tree.

• (Note pid_t is a signed integer)

72

https://www.gnu.org/software/libc/manual/html_node/Process-Identification.html

UNIX Process Management

pid = fork();
if (pid == 0)

exec(…);
else

…

pid = fork();
if (pid == 0)

exec(…);
else

…

pid = fork();
if (pid == 0)

exec(…);
else

…

main() {
…

}

pid = 0

pid = 9418

Original Process

Child Process

73

Inherits most attributes
from the parent.

Differences:
Register values including
PC, address space, etc.
and return value from
fork()

Question: What does this code print?
int child_pid = fork();
if (child_pid == 0) { // I'm the child process

printf("I am process #%d\n", getpid());
return 0;

} else { // I'm the parent process
printf("I am parent of process #%d\n", child_pid);
return 0;

}

74

Process State

• When our process is running, it may be in one of the
states below

• Running
• Ready
• Blocked

• Terminated
• Process is stopped permanently

75

Process Termination
• Process may be terminated for 3 reasons

• Receives a signal to terminate

• Returns from main routine
(what we have normally been doing in the class)

• Calling the exit function
• Terminates with a given status
• Returning 0 means no error
• When exit is called, this only happens once, and it does not return

• Note that if we have an error in our system, sometimes we do not want to
exit right away (e.g. safety critical system)

76

Process Termination
• Typically, a process will wait(pid) until its child process(es)

complete
• You will learn about zombie and orphaned processes in the lab

• abort(pid) can be used to immediately end a child process

77

