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Diving into the Operating Systems
• We have been developing our knowledge of tools to prepare for 

the exploration of the Operating System
• Assembly 
• C

• Today we will dive into the OS itself

• What we learned so far will be helpful understanding the OS
• Registers and instruction concepts
• Memory as a linear array and ways to work with memory addresses
• C is at the core of many common OSes
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OS: Virtualization + Abstraction
• The OS is a (software) land of magic and illusions
• OS makes a computer “easy” to use
• OS hides overwhelming complexities of hardware behind an API

• This is abstraction

• OS creates the illusion of an ideal, general, and powerful machine 
• This is virtualization

• We will start by looking at how the processor virtualizes the CPU
• Then the process and other abstractions the OS uses
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Recommended Reading
• The OSTEP book: up to Ch. 3-6
• Online: https://pages.cs.wisc.edu/~remzi/OSTEP/
• Hard copy: Lulu or Amazon
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Running Dynamic Code
• Basic function of an OS is to execute and manage code dynamically

• For example,
• A command issued at a command line terminal
• An icon double clicked from the desktop
• Jobs/tasks run as part of a batch system

• A process is the basic unit of a program in execution
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Programs and Processes
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Program
An executable 

file in long-term 
storage

Process
The running 

instantiation of a 
program, stored in 

RAM

One-to-many 
relationship 

between program 
and processes



How to Run a Program?

• How does the OS turn a double-clicked executable file into a 
process?

• What information must the executable file contain to run as a 
program?
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Program Formats
• Programs obey specific file formats

• CP/M (control program monitor) and DOS (disk operating system)
: COM executables (*.com)

• DOS: MZ executables (*.exe)
• Named after Mark Zbikowski, a DOS developer

• Windows Portable Executable (PE, PE32+) (*.exe)
• Modified version of Unix COFF executable format
• PE files start with an MZ header.

• Unix/Linux: Executable and Linkable Format (ELF)

• Mac OSX: Mach object file format (Mach-O)
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ELF File Format
• Spec: https://refspecs.linuxfoundation.org/elf/elf.pdf

• ELF Header
• Contains compatibility info
• Entry point of the executable code

• Program header table
• Lists all the segments in the file
• Used to load and execute the program

• Section header table
• Used by the linker

10

https://refspecs.linuxfoundation.org/elf/elf.pdf


ELF Header Example
$ gcc –g –o test test.c
$ readelf --header test
ELF Header:
Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class:                             ELF64
Data:                              2's complement, little endian
Version:                           1 (current)
OS/ABI:                            UNIX - System V
ABI Version:                       0
Type:                              EXEC (Executable file)
Machine:                           Advanced Micro Devices X86-64
Version:                           0x1
Entry point address:               0x400460
Start of program headers:          64 (bytes into file)
Start of section headers:          5216 (bytes into file)
Flags:                             0x0
Size of this header:               64 (bytes)
Size of program headers:           56 (bytes)
Number of program headers:         9
Size of section headers:           64 (bytes)
Number of section headers:         36
Section header string table index: 33
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The Program Loader
• OS functionality that loads programs into memory, creates 

processes
• Places segments into memory
• Loads necessary dynamic libraries
• Performs relocation
• Allocated the initial stack frame
• Sets EIP/RIP to the program’s entry point

• Process is a live program execution 
context or basic unit of execution
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Warmup
• How many processes do you have open at any given time?

• 10s, 100s? More!? :)
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First: Instruction Execution

• Code in an executable is a sequence of instructions
• CPU runs an instruction at a time
• This is done in a fetch-decode-execute cycle
• If you have 4 cores, your processor can do

4 FDE cycles at a time
• But how do we see ~100s of programs 

running on 4 cores?  
• What about a single core CPU?

MAR: holds address of current instruction, MDR: holds contents of address in MAR
CIR: stores current instruction, so not overwritten by additional fetches to MBR/MDR
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From the warm up
• Many programs are running, but only 8 CPUs that do the work
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The Problem: So how does our 
Operating System provide the illusion of 
100s of processes running at once? 



Virtualization with time sharing
• The Operating System (OS) runs one process at a time, 

• That executes one instruction a time
• After some amount of time the process stops or finishes
• Then the OS starts another process
• Eventually the same process will run again and continue where it left off
• Repeat

• This concept is known as time sharing
• Are the two states, Running and Ready, enough?

16



Process States
• What if the process needs to read/write to disk or perform a 

network request? Any problems?
• These operations take (comparatively) long to complete
• Keeping process state to Running?

• Hogs the CPU just waiting for disk/network access to complete
• Keeping process state to Ready?

• Might not be ready to run when its turn comes 
• Asking it to run may be waste of time

• Solution?
• Introduce a 3rd state, Blocked

• Meaning: the process requested some I/O operation
and cannot run until that operation is completed

17



Process States
• Each process can be in one of several states
• The OS schedules the state the process is in
• Typically, these are:

• Running: the process is executing on the CPU
• Ready: the process is ready to execute, 

but the OS did not choose to run it
• Blocked - the process issued some blocking operation

• I/O is a common blocking operation
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Then how does OS switch processes?
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OS Challenges to Virtualization
• Performance

• How to implement virtualization without excessive overhead

• Control
• How to run multiple processes without losing control over the CPU?
• Without OS control, a process 

• could occupy the CPU and run forever
• access memory it does not have access impacting safety and security
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Switching between processes
• Switching between processes is a challenge, because 

If the CPU is running a program, then the OS is not running

• If OS is not running, then how can it switch out/in processes?
• Think about how you would design the OS!
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When Do You Switch Processes?
• To share CPU between multiple processes, control must 

eventually return to the OS
• When should this happen?
• What mechanisms implements the switch from user process 

back to the OS?

• Four approaches:
1. Voluntary yielding
2. Switch during API calls to the OS
3. Switch on I/O
4. Switch based on a timer interrupt
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Voluntary Yielding
• Idea: processes must voluntary give up control by calling an OS API, 

e.g. thread_yield()

• Problems?
• Misbehaving or buggy apps may never yield

e.g., while (1) { //do something without yielding }

• No guarantee that apps will yield in a reasonable amount of time

• Waste of CPU resources, i.e. what if a process is idle-waiting on I/O?
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Interjection on OS APIs
• Idea: whenever a process calls an OS API, this gives the OS an 

opportunity to context switch
• E.g. printf(), fopen(), socket(), etc…

• The original Apple Macintosh used this approach
• Cooperative multi-tasking

• Problems?
• Misbehaving or buggy apps may never yield
• Some normal apps don’t use OS APIs for long periods of time

• E.g. a long, CPU intensive matrix calculation
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Switching on I/O
• Idea: when one process is waiting on I/O, switch to another process

• I/O APIs already go through the OS, so context switching is easy

• Problems?
• Some apps don’t have any I/O for long periods of time
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Preemptive Switching
• So far, processes will not switch to another until an action is taken

• e.g. an API call or an I/O interrupt

• Idea: use a timer to force context switching at set intervals
• Timer is running at a fixed frequency to measure how long a process 

has been running
• If it’s been running for some max duration (scheduling quantum), the 

handler switches to the next process

• Problems? Who will trigger the timer 
• Requires hardware support (a programmable timer)

• Thankfully, this is built-in to most modern CPUs
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Mechanisms for switching:
Exceptional Control Flow
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Remember
• Computers only really do one thing; they execute one instruction 

one after another
• Based on the order of instructions executing in your program.
• Your programs follow some control flow based on jumps and 

branches (and calls and returns)
• This is based on your programs state.

• However, sometimes we want to react based on the system state
• E.g., you hit Ctrl+C on the keyboard in your terminal and execution 

stops.

28



Exceptional Control Flow Mechanisms
• Low level mechanism

• Exceptions
• Change in control flow in response to a system event.
• This is implemented in hardware and OS software
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Exceptional Control Flow Mechanisms
• High level mechanisms

• Process context switch
• e.g. It appears that multiple programs are running at once on your OS, 

but remember only one instruction at a time.
• Context switches provide this illusion

• Signals
• Implemented by OS software
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Exceptions
• An exception is a transfer of control to the OS kernel

• The kernel is the memory-resident part of the OS
• Meaning OS lives in memory forever: we do not modify this!

• Examples of exceptions we may be familiar with:
• Divide by 0, arithmetic overflow, or typing Ctrl+C

• How does the OS know how to handle the exception?
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Exception Tables
• Somewhere in the OS, a table exists with different exceptions.

• Think of it like a giant switch or many if else-if statements.

• This is part of a kernel that you cannot modify.
• This code is in a “protected region” of memory

• For each exception, there is one way to handle it
(i.e., “exception handlers”)
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Our favorite: Invalid Memory Reference
• That is, the segmentation fault

• OS sends signal SIGSEGV to our user process
• This time the program gets terminated.
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Exceptional Control Flow Taxonomy
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Usually software-
driven exceptions

Usually, 
hardware-driven 

exceptions



Asynchronous Exceptions (Interrupts)

• Caused by events external to processor
• I.e., not from the result of an instruction the user wrote
• E.g.

• Timer interrupts scheduled to happen every few milliseconds
• A kernel can use this to take back control from a program/user

• Some network data arrives (I/O)
• A nice example is while reading from disk

• The processor can start reading, then hop over and perform some other 
tasks until memory is actually fetched.
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Synchronous Exceptions

• Events caused by executing an instruction
• Traps

• Intentionally done by the user
• e.g. system calls, breakpoints (like in gdb)

• Returns control to the next instruction
• Faults

• Unintentional, but possibly recoverable
• e.g. page faults (we’ll learn more about soon), floating point exceptions

• Handled by re-executing current instruction or aborting execution
• Aborts

• Unintentional and unrecoverable
• e.g. illegal instruction executed, parity error
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Exceptional Control Flow Taxonomy
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Okay, so Interrupts, Traps, 
Faults, and Aborts are our 
tools to change control 
flow within a process



System calls
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Different privilege levels
• Most modern CPUs support protected mode
• x86 CPUs support three rings with different privileges

• Ring 0: OS kernel
• Ring 1, 2: device drivers
• Ring 3: userland

• Most OSes only use rings 0 and 3

Ring 0
Kernel

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications
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Dual-Mode Operation
• Ring 0: kernel/supervisor mode

• Execution with the full privileges of the hardware
• Read/write to any memory, access any I/O device, read/write any 

disk sector, send/read any packet

• Ring 3: user mode or “userland”
• Limited privileges
• Only those granted by the operating system kernel
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Protected Features
• What system features are impacted by protection?

• Privileged instructions
• Only available to the kernel

• Limits on memory accesses
• Prevents user code from overwriting the kernel

• Access to hardware
• Only the kernel may directly interact with peripherals

• Programmable Timer Interrupt
• May only be set by the kernel
• Used to force context switches between processes
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System Calls
• Syscall is the lowest level of interaction with an operating system 

from a C programmer
• A user program can ask the OS for services that the OS manages 

• You may have used ‘_exit’ in your assignment
• Anything else you can think of?
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Changing Modes
• Applications often need to access the OS

• i.e. system calls
• Writing files, displaying on the screen, receiving data from the 

network, etc…

• But the OS is ring 0, and apps are ring 3
• How do apps get access to the OS?

• Apps invoke system calls with an interrupt
• E.g. int 0x80

• int causes a mode transfer from ring 3 to ring 0
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System Call Example
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IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes E/RIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

3. OS executes the system call
• Save the processes state
• Use E/RAX to locate the system call
• Execute the system call
• Restore the processes state
• Put the return value in E/RAX

4. Return to the process with iret
• Pops E/RIP, CS, and EFLAGS
• Switches from ring 0 to 3

Syscall Table

printf()

OS Code

RIP

Note: this shows a physical memory 
layout. The user program thinks it owns 
the entire memory space (the diagram 

that we saw in previous lectures). 



System Calls and arguments
• Helpful webpage with syscalls and arguments

• https://filippo.io/linux-syscall-table/
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Opening a File
• rax holds the system call # that we want to pass.

• Other arguments accessed as follows
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Opening a File | Illustration
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Processes
STOP HERE
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The Process
• A process is alive, a program is dead.  Long live the process!

• (A program is just the code.)

• Processes are organized by the OS using two key 
abstractions

• Logical Control Flow
• Programs “appear” to have exclusive control over the CPU
• Done by “context switching”

• Private Address Space
• Each program “appears” to have exclusive use of main 

memory
• Provided by mechanism called virtual memory
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A single 
process



Multiprocessing: Illusion
• When running processes, it appears that we are running many 

different tasks at the same time
• It also appears that our memory is neatly organized.

• Note from this diagram we see every process has its own
• stack
• heap
• data
• code
• registers
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Multiprocessing: Reality
• Remember, at any time, only one processor is really running code
• Program execution is interleaved
• OS manages memory addresses in virtual memory
• OS stores the saved registers for different programs. 

• (At some point in this class, you probably figured 16 registers is not 
enough for all of the processes that you were running.)

• When we switch which process is executing: this is a context switch
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Context switch: a high-level view 

• Save register values to memory
• Move on to the next process 

• Point to the stack of the next process
• Restore saved register values

• Start running executing the next process
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Switch



Storing Register Context | Data Structures

• In order to store the state of 
the registers, your OS will keep 
track of this information

• Typically there is a process list, 
and the list contains 
information like the registers.

• To the right is a struct for the 
xv6 operating system storing 
32-bit registers.  We will use 
xv6 later in the semester.
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Storing Process Information | Data Structures

• Additional information such as 
the process state is stored by 
the OS.

• proc is the data structure 
which stores information about 
each process (linux uses 
task_struct)

• To the right is the struct 
proc for the xv6 operating 
system
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Storing Process Information | Data Structures

• Additional information such as 
the process state is stored by 
the OS.

• proc is the data structure 
which stores information about 
each process (linux uses 
task_struct)

• To the right is the struct 
proc for the xv6 operating 
system
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Process state

Registers that we saw 
earlier

Process id



man proc
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top

• top is a program that will show linux processes that are running
• Top shows all of the processes running on a system
• Intuitively, it must be possible for a machine to host multiple 

processes, we do so when we ssh.
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htop

• htop is another program to show running processes
• It shows cores and their load
• It also shows the process tree (process / subprocess relationships)
• It can be scrolled left/right and up/down 
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Viewing processes (Like we did with top or system monitor)

• proc itself is like a filesystem
• (We’ll talk more about everything in Unix being viewed as a file).

• We can navigate to it with cd /proc then list all of the processes.
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man ps | Run ps -ef

• wAnother way to view actively running processes is ps
• -ef means view all of the processes
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Gathering more information from proc

• We can run cat /proc/[process_id]/status to output status 
information from proc

• Try some of the examples below in your environment (some may 
be admin restricted): 
https://www.networkworld.com/article/2693548/unix-viewing-
your-processes-through-the-eyes-of-proc.html
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Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: 
• Which are sequential?

• Sequential:
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Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B
• Which are sequential?

• Sequential:
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Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B, A&C
• Which are sequential?

• Sequential:

65



Concurrent Processing

• Each process running has its own control flow
• If they overlap in their lifetime, then they are running concurrently

• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B, A&C
• Which are sequential?

• Sequential: B &C
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Context Switching Illustration

• Processes are managed by a shared chunk of memory-resident OS 
code called the kernel

• The kernel is not a separate process itself, but runs as part of other 
existing processes

• Context Switches pass the control flow from one process to 
another

• Note how going from A to B (and B to A) requires some kernel code 
to be executed
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Process Control
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Creating a Process
• When we want to create a new process, we can do so from our 

parent process using the fork() command.
• This creates a new child process that runs.

• Conceptually, this new child is a clone of itself

• int fork(void)
• Returns 0 to the child process, 

Returns child’s PID to the parent process
• PID = process ID

• Child is almost identical to parent
• Child gets a copy (that is separate) to the parent’s virtual address space
• Child gets a copy of open file descriptors
• Child has a different PID than parent.

• Note: Fork actually returns twice (once to the parent, and once to the 
child), even though it is called once.
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man fork

70



Conceptual View of fork() | The before and after
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Additional Process commands

• int exec(const char *pathname, char *argv[], …)
• System call to change the program being run by the current process

• wait() – system call to wait for a process to finish
• signal() – system call to send a notification to another process

• pid_t getpid(void)
• Return PID of the current process

• pid_t getppid(void)
• Returns PID of parent process

• Note that when we create a process with fork
• The parent child relationship, makes a tree.

• (Note pid_t is a signed integer)
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UNIX Process Management

pid = fork();
if (pid == 0)

exec(…);
else

…

pid = fork();
if (pid == 0)

exec(…);
else

…

pid = fork();
if (pid == 0)

exec(…);
else

…

main() {
…

}

pid = 0

pid = 9418

Original Process

Child Process
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from the parent. 

Differences:
Register values including 
PC, address space, etc. 
and return value from 
fork()



Question: What does this code print?
int child_pid = fork();
if (child_pid == 0) {           // I'm the child process

printf("I am process #%d\n", getpid());
return 0;

} else {                        // I'm the parent process
printf("I am parent of process #%d\n", child_pid);
return 0;

}
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Process State

• When our process is running, it may be in one of the 
states below

• Running
• Ready
• Blocked

• Terminated
• Process is stopped permanently
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Process Termination
• Process may be terminated for 3 reasons

• Receives a signal to terminate

• Returns from main routine 
(what we have normally been doing in the class)

• Calling the exit function
• Terminates with a given status
• Returning 0 means no error
• When exit is called, this only happens once, and it does not return

• Note that if we have an error in our system, sometimes we do not want to 
exit right away (e.g. safety critical system)
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Process Termination
• Typically, a process will wait(pid) until its child process(es) 

complete
• You will learn about zombie and orphaned processes in the lab

• abort(pid) can be used to immediately end a child process
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