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Process

• The concept of process
• ELF and other executable file format
• How is an ELF loaded to memory?
• Virtualizing CPU with time-sharing
• The mechanism to switch processes



Diving into the Operating Systems

• So far, we have been preparing for our further exploration: 
• CPU, Memory, Assembly, C

• Today we will dive into the OS itself. What we learned will be useful
• Registers and instruction concepts
• Memory as a linear array and ways to work with memory 

addresses
• C is at the core of many common OSes



OS: Virtualization + Abstraction

• The OS is a (software) land of magic and illusions

• OS makes a computer “easy” to use

• OS hides overwhelming complexities of hardware behind an API
• This is abstraction

• OS creates the illusion of an ideal, general, and powerful machine 
• This is virtualization

• We will start by looking at how OSes provides CPU virtualization at the 
process level.

• Other abstractions the OS uses



Required Reading

• The OSTEP book: up to Ch. 3-6

• Online: https://pages.cs.wisc.edu/~remzi/OSTEP/ 

• Hard copy: Lulu or Amazon

https://pages.cs.wisc.edu/~remzi/OSTEP/


Process

• Basic function of an OS is to execute and manage code dynamically:

for example,
• A command issued at a command line terminal
• An icon double clicked from the desktop
• Jobs/tasks run as part of a batch system

• A process is the basic unit of a program in execution. On other words, 
process is a running program.



Programs and Processes (Commands: ls ps htop)
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Programs and Processes

Program
An executable file 

in long-term 
storage

Process
The running 

instantiation of a 
program, stored in 

RAM



Programs and Processes

One-to-many 
relationship between 

program and 
processes



Why so many Chrome processes?

https://dl.acm.org/doi/pdf/10.1145/1536616.1536634



How to Run a Program?

• How does the OS turn an executable file into a process?

• What information must an executable file contain to run as a program?



Program Formats

• Programs obey specific file formats
• Unix/Linux: Executable and Linkable Format (ELF)
• Mac OSX: Mach object file format (Mach-O)
• Windows Portable Executable (PE, PE32+) (*.exe)

• Modified version of Unix COFF executable format
• PE files start with an MZ header.

• CP/M (control program monitor) and DOS (disk operating system)
: COM executables (*.com)

• DOS: MZ executables (*.exe)
• Named after Mark Zbikowski, a DOS developer



Program Formats

Format Platform Spec availability Ownership

ELF Linux, BSD, Unix Open System V ABI Community / Linux Foundation

PE Windows Public (Microsoft PE/COFF spec) Microsoft

Mach-O macOS, iOS Public headers/docs by Apple Apple

“System V” (often written SysV) was a line of commercial UNIX 
from AT&T in the 1980s. System V ABI is a set of open 
specifications defining: (1) the Executable and Linkable Format 
(ELF) for object files and executables. (2) Calling conventions, 
symbol tables, relocation formats, dynamic linking rules, etc.

The docs were published and made freely available, not proprietary 
or locked. That’s why Linux, BSD, Solaris, and many other Unix-like 
OSes could adopt ELF with no licensing restrictions.



ELF File Format

• Spec: https://refspecs.linuxfoundation.org/elf/elf.pdf 

• ELF Header
• Contains compatibility info
• Entry point of the executable code

• Program header table
• Lists all the segments in the file
• Used to load and execute the program

• Section header table
• Used by the linker

https://refspecs.linuxfoundation.org/elf/elf.pdf


ELF Header Example



The Program Loader

• OS functionality that loads programs into memory, creates processes
• Places segments into memory
• Loads necessary dynamic libraries
• Performs relocation
• Allocated the initial stack frame
• Sets EIP to the programs entry point

• Process is a live program execution 
context or basic unit of execution

ELF Header

.text

.data

.rodata

.bss

ELF Program

Memory
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The Program Loader

• OS functionality that loads programs into memory, creates processes
• Places segments into memory
• Loads necessary dynamic libraries
• Performs relocation
• Allocated the initial stack frame
• Sets EIP to the programs entry point

• Process is a live program execution 
context or basic unit of execution

ELF Header

.text

.data

.rodata

.bss

ELF Program

Memory

.text
.data

.rodata

.bss

Heap

Stack
ESP

EIP



xv6 as an example

Background: xv6 programs are statically linked. All the user 
programs you compile for xv6 (like ls, sh, etc.) are fully statically linked 
into one ELF file — no shared libraries. Kernel itself is the loader.

https://github.com/mit-pdos/xv6-public/blob/master/exec.c

In exec.c (exec() in kernel/exec.c):
● The kernel opens the ELF file from the file system.

● Reads the ELF header (struct elfhdr) and each program header 
(struct proghdr).

● For each loadable segment, it allocates memory, maps it into the 
new process’s address space, and copies the data from the file.

● Sets up the stack and the initial instruction pointer to the ELF’s entry 
address.



xv6 as an example
myproc() (kernel/proc.c)
 Returns a pointer to the current process (struct proc *) running on this CPU. It looks up the per-CPU structure and 
fetches its proc field.

setupkvm() (kernel/vm.c)
 Builds a fresh kernel page table (kernel virtual memory only): maps kernel text/data, devices, I/O space, etc. Used 
when creating a new address space for a process (before loading user pages).

allocuvm(pagetable, oldsz, newsz) (kernel/vm.c)
 Grows a process’s user address space from oldsz to newsz. Allocates physical pages and maps them into 
pagetable with user permissions. Returns the new size (or 0 on failure).

loaduvm(pagetable, va, ip, offset, sz) (kernel/vm.c / kernel/exec.c)
 Loads program bytes from disk into user memory: reads sz bytes from inode ip at file offset and copies them 
into the user virtual region starting at virtual address va (assumes those pages are already allocated/mapped). Used 
by exec() to load ELF segments.

switchuvm(p) (kernel/vm.c / kernel/proc.c)
 Switches the hardware MMU to a process’s page table (and does any CPU/TSS setup on x86). Called when the 
scheduler is about to run process p, or when a process’s memory image has just changed (e.g., after exec).

freevm(pagetable) (kernel/vm.c)
 Frees a process’s user page table and all user pages it points to (tears down the address space). Used on 
process exit or on exec failure paths.



Linux as an example
How it starts:
1. You run an ELF file => kernel’s execve() system call reads its ELF 

headers.

2. If the file has an INTERP section, the kernel:
○ Loads that interpreter binary (e.g., ld-linux-x86-64.so.2) into 

memory.
○ Jumps to its entry point in user space.

3. The interpreter (now running in ring 3) maps your program’s 
segments and shared libraries, relocates symbols, and finally 
transfers control to your program’s _start.



Warmup

• How many processes do you have open at any given time?
• 10s, 100s? More!? :)

ps -aux | wc -l



First: Instruction Execution

• Code in an executable is a sequence of instructions

• A CPU/core runs an instruction at a time

• This is done in a fetch-decode-execute cycle

• If you have 4 cores, your processor can do
4 FDE cycles at a time

• But how do we see ~100s of programs 
running on 4 cores?  

• What about a single core CPU?

Internal CPU registers that implement the fetch–decode–execute cycle:
Memory Address Register: holds address of current instruction
Memory Data Register: holds contents of address in MAR
Current Instruction Register: stores current instruction, so not overwritten by additional 
fetches to MBR/MDR



From the warm up

• Many programs are running, but only 8 CPUs that 
do the work

lscpu



From the warm up

• Many programs are running, but only 8 CPUs that 
do the work

The Problem: So how does our Operating System 
provide the illusion of hundreds of processes 
running at once? 



Virtualization with time sharing

• If one CPU, the Operating System runs one process at a time, 
• That executes one instruction a time

• After some amount of time the process stops or finishes
• Then the OS starts another process
• Eventually the same process will run again and continue where it left off
• Repeat



Virtualization with time sharing

• If one CPU, the Operating System runs one process at a time, 
• That executes one instruction a time

• After some amount of time the process stops or finishes
• Then the OS starts another process
• Eventually the same process will run again and continue where it left off
• Repeat

• This concept is known as time sharing
• Are the two states, Running and Ready, enough?



Process States

• What if the process needs to read/write to disk or perform a network 
request? Any problems?



Process States

• What if the process needs to read/write to disk or perform a network 
request? Any problems?

• These operations take (comparatively) long to complete



Process States

• What if the process needs to read/write to disk or perform a network 
request? Any problems?

• These operations take (comparatively) long to complete
• Keeping process state to Running?

• Keeping process state to Ready?



Process States

• What if the process needs to read/write to disk or perform a network 
request? Any problems?

• These operations take (comparatively) long to complete
• Keeping process state to Running?

• Hogs the CPU just waiting for disk/network access to complete
• Keeping process state to Ready?



Process States

• What if the process needs to read/write to disk or perform a network 
request? Any problems?

• These operations take (comparatively) long to complete
• Keeping process state to Running?

• Hogs the CPU just waiting for disk/network access to complete
• Keeping process state to Ready?

• Might not be ready to run when its turn comes 
• Asking it to run may be waste of time



Process States

• What if the process needs to read/write to disk or perform a network 
request? Any problems?

• These operations take (comparatively) long to complete
• Keeping process state to Running?

• Hogs the CPU just waiting for disk/network access to complete
• Keeping process state to Ready?

• Might not be ready to run when its turn comes 
• Asking it to run may be waste of time

• Solution?



Process States

• What if the process needs to read/write to disk or perform a network 
request? Any problems?

• These operations take (comparatively) long to complete
• Keeping process state to Running?

• Hogs the CPU just waiting for disk/network access to complete
• Keeping process state to Ready?

• Might not be ready to run when its turn comes 
• Asking it to run may be waste of time

• Solution?
• Introduce a 3rd state, Blocked 

• Meaning: the process requested some I/O operation
and cannot run until that operation is completed



Process States

• Each process can be in one of several states

• The OS schedules the state the process is in

• Typically, these are:
• Running: the process is executing on the 

CPU
• Ready: the process is ready to execute, 

but the OS did not choose to run it
• Blocked - the process issued some blocking 

operation
• I/O is a common blocking operation



xv6 as an example

• UNUSED – empty slot in the process table; no process here.

• EMBRYO (x86) / USED (RISC-V) – slot allocated and being initialized 
(after allocproc()), but not runnable yet.

• SLEEPING – blocked, waiting on some event (a “channel”), e.g., disk I/O 
to finish.

• RUNNABLE – ready to run; waiting for CPU.

• RUNNING – currently executing on a CPU.

• ZOMBIE – finished execution (exit() called), but parent hasn’t wait()ed 
yet; holds exit status/resources to be reaped.

https://github.com/mit-pdos/xv6-public/blob/master/proc.h



Why I Don’t Feel Apps Lagging Even Though They Time-Share the CPU?



Then how does OS switch processes?



OS Challenges to Virtualization

• Performance
• How to implement virtualization without excessive overhead?

• Control
• How to run multiple processes without losing control over the 

CPU?
• Without OS control, a process 

• could occupy the CPU and run forever
• access memory it does not have access impacting safety and 

security



Switching between processes

• Switching between processes is a challenge, because 

If the CPU is running a program, then the OS is not running



Switching between processes

• Switching between processes is a challenge, because 

If the CPU is running a program, then the OS is not running

• If OS is not running, then how can it switch out/in processes?
• Think about how you would design the OS!



When Do You Switch Processes?

• To share CPU between multiple processes, control must eventually 
return to the OS

• When should this happen?
• What mechanisms implements the switch from user process back 

to the OS?

• Four approaches:



When Do You Switch Processes?

• To share CPU between multiple processes, control must eventually 
return to the OS

• When should this happen?
• What mechanisms implements the switch from user process back 

to the OS?

• Four approaches:
1. Voluntary yielding
2. Switch during API calls to the OS
3. Switch on I/O
4. Switch based on a timer interrupt



Voluntary Yielding

• Idea: processes must voluntary give up control by calling an OS API, 
e.g. thread_yield()
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Voluntary Yielding

• Idea: processes must voluntary give up control by calling an OS API, 
e.g. thread_yield()

• Problems?
• Misbehaving or buggy apps may never yield

e.g., while (1) { //do something without yielding }

• No guarantee that apps will yield in a reasonable amount of time

• Waste of CPU resources, i.e. what if a process is idle-waiting on 
I/O?



Interjection on OS APIs

• Idea: whenever a process calls an OS API, this gives the OS an 
opportunity to context switch

• E.g. printf(), fopen(), socket(), etc…

• The original Apple Macintosh used this approach
• Cooperative multi-tasking
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Interjection on OS APIs

• Idea: whenever a process calls an OS API, this gives the OS an 
opportunity to context switch

• E.g. printf(), fopen(), socket(), etc…

• The original Apple Macintosh used this approach
• Cooperative multi-tasking

• Problems?
• Misbehaving or buggy apps may never call OS APIs
• Some normal apps don’t use OS APIs for long periods of time

• E.g. a long, CPU intensive matrix calculation



Switching on I/O

• Idea: when one process is waiting on I/O, switch to another process
• I/O APIs already go through the OS, so context switching is easy
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Switching on I/O

• Idea: when one process is waiting on I/O, switch to another process
• I/O APIs already go through the OS, so context switching is easy

• Problems?
• Some apps don’t have any I/O for long periods of time



Preemptive Switching

• So far, processes will not switch to another until an action is taken
• e.g. an API call or an I/O interrupt

• Idea: use a timer to force context switching at set intervals
• Timer is running at a fixed frequency to measure how long a 

process has been running
• If it’s been running for some max duration (scheduling quantum), 

the handler switches to the next process
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Preemptive Switching

• So far, processes will not switch to another until an action is taken
• e.g. an API call or an I/O interrupt

• Idea: use a timer to force context switching at set intervals
• Timer is running at a fixed frequency to measure how long a 

process has been running
• If it’s been running for some max duration (scheduling quantum), 

the handler switches to the next process

• Problems? Who will trigger the timer 
• Requires hardware support (a programmable timer)

• Thankfully, this is built-in to most modern CPUs



Why I Don’t Feel Apps Lagging Even Though They Time-Share the CPU?

Linux as an Example

On most desktop Linux systems, the default scheduler “tick” runs 250 Hz or 1000 
Hz — meaning the kernel timer fires every 4 ms or 1 ms. This timer tick alone 
lets the scheduler run up to 1000 times per second per CPU, checking whether 
to switch processes. On top of this, Linux can also reschedule when events 
happen (I/O completes, a higher-priority process wakes up), so the system can 
respond even faster when needed.



Mechanisms for switching:
Exceptional Control Flow



Normal Control Flow or Regular Execution

• Computers only really do one thing, they execute one instruction one 
after another

• This is based on the execution in your program.
• Your programs follow some control flow based on jumps and 

branches (and calls and returns)
• This is based on your programs state.



Reasons to break normal control flow

However, sometimes we want to break normal control flow
• Multitasking. Stop one so others can run.
• The program needs to take care of user input. E.g., you hit 

Ctrl+C on the keyboard in your terminal and execution stops.
• Program can make a system call.



Exceptional Control Flow Mechanisms

• Low level mechanism
• Exceptions

• Change in control flow in response to a system event.
• This is implemented in hardware and OS software



Exceptional Control Flow Mechanisms

• High level mechanisms
• Process context switch

• e.g. It appears that multiple programs are running at once on 
your OS, but remember only one instruction at a time.

• Context switches provide this illusion
• Signals

• Implemented by OS software



Exceptional Control Flow Taxonomy

Exception (broad sense): any event that causes the CPU to stop 
its current normal execution path and transfer control to special 

handler code.



Exceptional Control Flow Taxonomy

Usually 
software-driven 

exceptions

Usually, 
hardware-driven 

exceptions



Asynchronous Exceptions (Interrupts)

• Caused by events external to processor
• I.e., not from the result of an instruction the user wrote
• E.g.

• Timer interrupts scheduled to happen every few milliseconds
• A kernel can use this to take back control from a 

program/user
• Some network data arrives (I/O)
• A nice example is while reading from disk

• The processor can start reading, then hop over and 
perform some other tasks until memory is actually 
fetched.



On Linux

cat /proc/interrupts

grep '^CONFIG_HZ=' 
/boot/config-$(uname -r)

65,631,155/250 ≈ 262,500 
seconds ≈ 3 days of active ticks



Synchronous Exceptions

• Events caused by executing an instruction
• Traps

• Intentionally done by the user
• e.g. system calls, breakpoints (like in gdb)

• Returns control to the next instruction
• Faults

• Unintentional, but possibly recoverable
• e.g. page faults (we’ll learn more about soon), floating point 

exceptions
• Handled by re-executing current instruction or aborting execution

• Aborts
• Unintentional and unrecoverable

• e.g. illegal instruction executed, parity error

https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/RAM_parity


What is a page fault?
 The CPU tried to access a virtual page not currently mapped.

Two types
● Minor fault: Page not mapped yet but data already in RAM; kernel just sets up 

page tables (fast).
● Major fault: Page must be read from disk or swap (slow).

Why so many?
● Linux uses demand paging — memory isn’t backed until first use.
● Shared libraries and file mappings are faulted in on demand.
● Growing stacks and heap also cause minor faults.

Key metrics
● pgfault — total page faults (mostly minor).
● pgmajfault — major faults (performance cost).



The debugger overwrite the first byte of the target instruction with the opcode 0xCC 
(INT3).

When the CPU fetches and executes that byte, it generates #BP (Breakpoint 
Exception, vector 3).

The OS delivers this exception back to the debugger (e.g., via ptrace on Linux).

After stopping, the debugger typically restores the original byte so the instruction 
can run if you continue.

No debug registers involved.

Software breakpoint — int3 / #BP



Exceptional Control Flow Taxonomy

Okay, so Interrupts, Traps, 
Faults, and Aborts are our 
tools to change control flow 
within a process



Exceptions

• An exception is a transfer of control to the OS kernel
• The kernel is the memory-resident part of the OS

• Meaning OS lives in memory forever: we do not modify this!

• Examples of exceptions we may be familiar with:
• Divide by 0, arithmetic overflow, or typing Ctrl+C



Exceptions

• An exception is a transfer of control to the OS kernel
• The kernel is the memory-resident part of the OS

• Meaning OS lives in memory forever: we do not modify this!

• Examples of exceptions we may be familiar with:
• Divide by 0, arithmetic overflow, or typing Ctrl+C

• How does the OS know how to handle the exception?



Exception Tables

• Somewhere in the OS, a table exists with 
different exceptions.

• Think of it like a giant switch or many if 
else-if statements.

• This is part of a kernel that you cannot modify.
• This code is in a “protected region” of 

memory

• For each exception, there is one way to handle 
it

• (We call these “exception handlers”)



Our favorite: Invalid Memory Reference

• That is, the segmentation fault
• OS sends signal SIGSEGV to our user process
• This time the program gets terminated.



x86 and xv6 as an example

In x86 processors, the Interrupt Descriptor 
Table (IDT) is a special data structure the CPU uses 
to look up what code to run when an interrupt, 
exception, or trap happens.



x86 and xv6 as an example

The IDT is an array of descriptors (entries), each describing how to handle a 
specific interrupt or exception.

Each entry tells the CPU:

● The address of the interrupt/trap handler function (in kernel space).
● The segment selector to use (usually the kernel code segment).
● Attributes such as privilege level and gate type.



x86 and xv6 as an example

https://cdrdv2.intel.com/v1/dl/getContent/671447



x86 and xv6 as an example

https://github.com/mit-pdos/xv6-public/blob/master/trap.c



System Calls



Different privilege levels

• Most modern CPUs support 
protected mode

• x86 CPUs support three rings with 
different privileges

• Ring 0: OS kernel. Most 
privileged. Full hardware 
access.

• Ring 1, 2: device drivers
• Ring 3: userland. Restricted.

• Most OSes only use rings 0 and 3

Ring 0
Kernel

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications



Dual-Mode Operation

• Ring 0: kernel/supervisor mode
• Execution with the full privileges of the hardware
• Read/write to any memory, access any I/O device, read/write any 

disk sector, send/read any packet

• Ring 3: user mode or “userland”
• Limited privileges
• Only those granted by the operating system kernel



Protected Features

• What system features are impacted by protection?
• Privileged instructions

• Only available to the kernel
• Limits on memory accesses

• Prevents user code from overwriting the kernel
• Access to hardware

• Only the kernel may directly interact with peripherals
• Programmable Timer Interrupt

• May only be set by the kernel
• Used to force context switches between processes



x86-64 CPL - Current Privilege Level

CPL = Current Privilege Level — it’s the hardware’s notion of 
“what ring am I running in right now.”

CPL is stored in the lowest two bits of the CS (Code 
Segment) selector register on x86/x86-64.



Key Differences: Ring 0 vs Ring 3

Feature Ring 0 (Kernel) Ring 3 (User)

Privilege level Highest (CPL=0) Lowest (CPL=3)

Access to 
hardware

Direct (I/O ports, control 
registers)

No direct hardware access

Memory 
access

Can map & modify page 
tables

Limited to user space virtual memory

Instructions 
allowed

All x86 privileged 
instructions

Non-privileged subset only

System calls Not needed (already 
privileged)

Must trap to kernel via syscalls / int 
?? /syscall



What are System Calls?

When a process needs to invoke a kernel service, it invokes a procedure 
call in the operating system interface using special instructions (not a 
call instruction in x86; but int or syscall). Such a procedure is called a 
system call. 

The system call enters the kernel; the kernel performs the service and 
returns. Thus a process alternates between executing in user space and 
kernel space. 

System calls are generally not invoked directly by a program, but rather 
via wrapper functions in glibc (or perhaps some other library).



System Calls

• Syscall is the lowest level of interaction with an operating system from 
a C programmer

• A user program can ask the OS for services that the OS manages 
• You may have used ‘_exit’ in your assignment
• Anything else you can think of?
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• You may have used ‘_exit’ in your assignment
• Anything else you can think of?



Popular System Call

On Unix, Unix-like and other POSIX-compliant operating systems, 
popular system calls are open, read, write, close, wait, exec, fork, exit, 
and kill. 

Many modern operating systems have hundreds of system calls. For 
example, Linux and OpenBSD each have over 300 different calls, FreeBSD 
has over 500, Windows 7 has close to 700.

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Open_(system_call)
https://en.wikipedia.org/wiki/Read_(system_call)
https://en.wikipedia.org/wiki/Write_(system_call)
https://en.wikipedia.org/wiki/Close_(system_call)
https://en.wikipedia.org/wiki/Wait_(system_call)
https://en.wikipedia.org/wiki/Exec_(system_call)
https://en.wikipedia.org/wiki/Fork_(system_call)
https://en.wikipedia.org/wiki/Exit_(system_call)
https://en.wikipedia.org/wiki/Kill_(system_call)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/FreeBSD


Glibc interfaces

Often, but not always, the name of the wrapper function is the same as 
the name of the system call that it invokes. 

For example, glibc contains a function chdir() which invokes the 
underlying "chdir" system call.



System Calls change the CPU Mode (CPL)

• Applications often need to access the OS
• i.e. system calls
• Writing files, displaying on the screen, receiving data from the 

network, etc…

• But the OS is ring 0, and apps are ring 3

• How do apps get access to the OS?
• Apps invoke system calls with an interrupt

• E.g. int 0x80
•  int causes a mode transfer from ring 3 to ring 0



Tools: strace

strace ls

Use “man 2 syscall_name” to check 
out its usage



Making a System Call in x86/64 Assembly

On x86/x86-64, most system calls rely on the software interrupt.

A software interrupt is caused either by an exceptional condition in the 
processor itself, or a special instruction (the int 0x80 instruction or 
syscall instruction).

For example: a divide-by-zero exception will be thrown if the processor's 
arithmetic logic unit is commanded to divide a number by zero as this 
instruction is in error and impossible. 



https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

Making a System Call in x86 Assembly (INT 0x80)



http://shell-storm.org/shellcode/files/shellcode-827.php

xor    eax,eax
push   eax
push   0x68732f2f
push   0x6e69622f
mov    ebx,esp
push   eax
push   ebx
mov    ecx,esp
mov    al,0xb
int    0x80

Making a System Call in x86 Assembly

http://shell-storm.org/shellcode/files/shellcode-827.php
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Making a System Call in x86 Assembly

execve(“/bin/sh”, address of string “/bin/sh”, 0)



Making a System Call in x86_64 (64-bit) Assembly

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit



push rax
xor rdx, rdx
xor rsi, rsi
mov rbx,'/bin//sh'
push rbx
push rsp
pop rdi
mov al, 59
syscall

Making a System Call in x86_64 (64-bit) Assembly



System Call Example

IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

Syscall Table

tty_write()
OS Code

EIP

Note: this shows a physical memory layout. The user 
program thinks it owns the entire memory space (the 

diagram that we saw in previous lectures). 



System Call Example

IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

Syscall Table

tty_write()
OS Code

EIP

Note: this shows a physical memory layout. The user 
program thinks it owns the entire memory space (the 

diagram that we saw in previous lectures). 



System Call Example

IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

Syscall Table

tty_write()
OS Code

EIP

Note: this shows a physical memory layout. The user 
program thinks it owns the entire memory space (the 

diagram that we saw in previous lectures). 



System Call Example

IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

3. OS executes the system call
• Save the processes state
• Use EAX to locate the system call
• Execute the system call
• Restore the processes state
• Put the return value in EAX

Syscall Table

tty_write()
OS Code

EIP

Note: this shows a physical memory layout. The user 
program thinks it owns the entire memory space (the 

diagram that we saw in previous lectures). 



System Call Example

IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

3. OS executes the system call
• Save the processes state
• Use EAX to locate the system call
• Execute the system call
• Restore the processes state
• Put the return value in EAX

Syscall Table

tty_write()
OS Code

EIP

Note: this shows a physical memory layout. The user 
program thinks it owns the entire memory space (the 

diagram that we saw in previous lectures). 



System Call Example

IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

3. OS executes the system call
• Save the processes state
• Use EAX to locate the system call
• Execute the system call
• Restore the processes state
• Put the return value in EAX

Syscall Table

tty_write()
OS Code

EIP

Note: this shows a physical memory layout. The user 
program thinks it owns the entire memory space (the 

diagram that we saw in previous lectures). 



System Call Example

IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)
• Switch from ring 3 to 0

3. OS executes the system call
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• Put the return value in EAX
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Syscall Table
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OS Code
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Note: this shows a physical memory layout. The user 
program thinks it owns the entire memory space (the 
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System Calls and arguments

• Helpful webpage with syscalls and arguments
• https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/


Opening a File

• rax holds the system call # that we want to pass.
• Other arguments accessed as follows



Opening a File | Illustration



x86 and xv6 as an example

https://github.com/mit-pdos/xv6-public/blob/master/trap.c
https://github.com/mit-pdos/xv6-public/blob/master/syscall.c



Piping and Redirection



Channels of Communication for Linux Process 

Every process in Linux has three initial, standard channels of 
communication:

● Standard Input (stdin, fd=0) is the channel through which the 
process takes input. For example, your shell uses Standard Input to 
read the commands that you input.

● Standard Output (stdout, fd=1) is the channel through which 
processes output normal data, such as the flag when it is printed to 
you in previous challenges or the output of utilities such as ls.

● Standard Error (stderr, fd=2) is the channel through which processes 
output error details. For example, if you mistype a command, the 
shell will output, over standard error, that this command does not 
exist.



Examples

Redirecting output > or 1>
echo hi > asdf       echo hi 1> asdf
ls > files.txt

Appending output >>
echo hi >> asdf

Redirecting errors 2>
/challenge/run 2> errors.log

Redirecting input <
rev < messagefile
sort < names.txt



Pipe

The | (pipe) operator. Standard output from the command to the left of 
the pipe will be connected to (piped into) the standard input of the 
command to the right of the pipe.

echo hello-world | wc -c



How to use the fork syscall?

What it does
● Creates a new process by duplicating the calling process.
● The new process is called the child; the original is the parent.

Key details
● Both processes continue execution from the point after the fork() call.
● Return values:

○ Parent gets the child’s PID (positive number).
○ Child gets 0.
○ If fork fails, parent gets -1.

● Child initially gets a copy of:
○ Parent’s address space (code, data, stack).
○ File descriptors.
○ Environment and signal dispositions.



How to use the fork syscall?

#include <stdio.h>
#include <unistd.h>

int main() {
    pid_t pid = fork();
    if (pid == 0) {
        // Child process
        printf("I am the child! PID = %d\n", getpid());
    } else if (pid > 0) {
        // Parent process
        printf("I am the parent! Child PID = %d\n", pid);
    } else {
        // Error
        perror("fork failed");
    }
    return 0;
}

strace -f ./a.out



How many processes?

#include <stdio.h>
#include <unistd.h>

int main() {
    fork();    // First fork
    fork();    // Second fork
    fork();    // Third fork

    printf("Hello from PID 
%d\n", getpid());
    return 0;
}



How to use the dup and dup2 syscall?

Both: create a duplicate of an existing file descriptor (FD)
An FD is a handle the OS gives to open files, pipes, sockets, etc.

dup(oldfd)
● Creates a new FD that refers to the same file/pipe/socket as oldfd.
● Returns lowest-numbered free FD (you don’t choose the number).
● Leaves oldfd unchanged.

int fd2 = dup(fd1);  // fd2 is some free number

dup2(oldfd, newfd)
● Makes newfd refer to the same thing as oldfd.
● If newfd is already open, it’s closed first.
● Guarantees the new FD number is exactly newfd.

dup2(fd1, STDOUT_FILENO); // redirect stdout to fd1



How to use the wait syscall?

Purpose
● Allows a parent process to wait for one of its child processes to 

finish.
● Collects the child’s exit status to avoid creating a zombie process.

pid_t wait(int *status);

Behavior:
● Suspends the calling (parent) process until one of its children exits.
● Returns the PID of the terminated child.
● If status is not NULL, stores the child’s exit code.

Returns -1 if no children or on error.



How to use the wait syscall?

#include <sys/wait.h>
#include <unistd.h>
#include <stdio.h>

int main() {
    pid_t pid = fork();
    if (pid == 0) {
        printf("Child: exiting\n");
        _exit(42);
    } else {
        int status;
        pid_t child = wait(&status);
        printf("Parent: child %d exited with code %d\n",
               child, WEXITSTATUS(status));
    }
    return 0;
}



What does this program do?

pid_t pid = fork();
    if (pid == 0) {
        // Child process
        int fd = open("out.txt", O_CREAT | O_WRONLY | O_TRUNC, 0644);
        if (fd < 0) { perror("open"); exit(1); }

        // Redirect stdout to the file
        dup2(fd, STDOUT_FILENO);
        close(fd);

        // Run command
        execlp("ls", "ls", NULL);
        perror("execlp"); // only runs if execlp fails
        exit(1);
    } else if (pid > 0) {
        wait(NULL);
    }



What does this program do?

pid = fork();
    if (pid == 0) {
        int fd = open("in.txt", O_RDONLY);
        if (fd < 0) { perror("open"); exit(1); }

        // Redirect stdin from the file
        dup2(fd, STDIN_FILENO);
        close(fd);

        execlp("sort", "sort", NULL);
        perror("execlp");
        exit(1);
    } else if (pid > 0) {
        wait(NULL);
    }
    return 0;



Announcements

1. The class scheduled for Tuesday will be delivered online. I will post the exact 
meeting time on Canvas later. Attendance is optional, and students are 
welcome to join if they wish. The recording of the session will be uploaded 
to YouTube afterward for anyone who prefers to watch it later.

2. Midterm exam on Thursday. If you've done the readings and the 
assignments for the first 4 weeks, then you should be fine. Open book/notes, 
no electronic devices, no substantial coding questions.



Processes



The Process

• A process is alive, a program is dead. A program is just the 
code.

• Processes are organized by the OS using two key 
abstractions

• Logical Control Flow
• Programs “appear” to have exclusive control over 

the CPU
• Done by “context switching”

• Private Address Space
• Each program “appears” to have exclusive use of 

main memory
• Provided by mechanism called virtual memory

A single 
process



Multiprocessing: Illusion

• When running processes, it appears that we are running many 
different tasks at the same time

• It also appears that our memory is neatly organized.
• Note from this diagram we see every process has its own

• stack
• heap
• data
• code
• registers

Process NProcess 2Process 1



Multiprocessing: Reality

• Remember, at any time, only one processor is really 
running code

• Program execution is interleaved

• OS manages memory addresses in virtual memory

• OS stores the saved registers for different programs. 

• (At some point in this class, you probably figured 16 
registers is not enough for all of the processes that 
you were running.)

• When we switch which process is executing: this is a 
context switch



Context switch: a high-level view 

• Save register values to memory

• Move on to the next process 
• Point to the stack of the next process
• Restore saved register values

• Start running executing the next process

Context 
Switch



Concurrent Processing

• Each process running has its own control flow

• If they overlap in their lifetime, then they are running concurrently
• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each 

other?
• Concurrent: 

• Which are sequential?
• Sequential:
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Concurrent Processing

• Each process running has its own control flow

• If they overlap in their lifetime, then they are running concurrently
• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each 

other?
• Concurrent: A&B, A&C

• Which are sequential?
• Sequential: B &C



Context Switching Illustration

• Processes are managed by a shared chunk of memory-resident OS 
code called the kernel

• The kernel is not a separate process itself, but runs as part of other 
existing processes

• Context Switches pass the control flow from one process to another
• Note how going from A to B (and B to A) requires some kernel code 

to be executed
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there can be different 

implementations
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Saved ESP for Process 1

Saved ESP for Process 2

OS Memory

a = b + 1;

switch();

b--;

Process 1’s Code
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my_str[0] = ‘\n’;

i = strlen(my_str);
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Process 2’s Code
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OS Code

An example of a context switch: 
there can be different 

implementations
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xv6 as an example



xv6 as an example: process A running in user mode

https://github.com/mit-pdos/xv6-public/blob/master/proc.h



xv6 as an example: timer interrupt fires

https://github.com/mit-pdos/xv6-public/blob/master/trapasm.S

Hardware (on privilege change) 
switches to A’s kstack (from TSS.esp0)

Hardware pushes: SS, ESP, EFLAGS, CS, 
EIP (old user context) onto A’s kstack

alltraps then saves the rest:

pushal                     # 
eax,ecx,edx,ebx,esp,ebp,esi,edi



xv6 as an example: timer interrupt fires

https://github.com/mit-pdos/xv6-public/blob/master/x86.h

trapframe



xv6 as an example: trap()

https://github.com/mit-pdos/xv6-public/blob/master/trap.c



xv6 as an example: yield() from A to scheduler

https://github.com/mit-pdos/xv6-public/blob/master/proc.c



xv6 as an example: sched() 

https://github.com/mit-pdos/xv6-public/blob/master/proc.c

sched() calls swtch(&A->context, 
cpu->scheduler):

● saves A’s kernel context 
(callee-saved regs & return 
EIP) into A->context

● loads the CPU’s scheduler 
context

● jumps to it



xv6 as an example: swtch 

https://github.com/mit-pdos/xv6-public/blob/master/swtch.S

the kernel context of the CPU’s 
scheduler (the code that runs 
scheduler()

Save the current process’s kernel 
registers into p->context,

and restore the scheduler’s 
registers from cpu->scheduler.



xv6 as an example



xv6 as an example: CPU’s scheduler loop picks B

https://github.com/mit-pdos/xv6-public/proc.c

The scheduler scans for a RUNNABLE process (here, 
B).

switchuvm(B):

● loads CR3 with B’s page directory (B’s address 
space)

● sets the CPU’s TSS.esp0 = top of B’s kstack (for 
future user→kernel entries)

swtch(&cpu->scheduler, B->context):

● saves scheduler’s context
● restores B’s kernel context
● jumps to B->context->eip (resuming B’s kernel 

thread where it last yielded/slept) - ret 
instruction in swtch


