NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter
Desnoyers’ lecture slides for the same course.

An Introduction to Caches

Cache

* Cache
* A smaller, faster storage device than the layer below
* A staging area for a subset of the data in a larger, slower device

* For each level in the memory hierarchy K
* K'serves as a cache for the larger slower device at level K+1

* A memory hierarchy works because of locality
* Programs access data at level K more often than data at K+1

* With this, we can holds a lot of data at lower levels, and still
access data at high speeds using higher level caches

Computer Memory Hierarchy

aaaaaaaaaaaaa

mmmmmmmmmmmmm
sssssssss
aaaaaaaaaaaaa

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
aaa

.........
eeeeeeeeeeeeeeeeeeeeeeeee

Caches are everywhere!

* Registers (Instruction Cache)

* L1 cache

« L2 cache

* Translation Lookaside Buffer (TLB)
*Virtual Memory

 Disk Cache

* Network buffer cache

* Browser cache

* Web Cache, CDNs, ...

Cache on Hardware

* CPU will look for data in Cache first
* Attempt to load into registers
* |f not found, then will travel on

System Bus -> 1/O Bridge -> then to main memory

CPUchip

Register file

=A==

1L T7

System bus

Bus interface

IO
bridge

<:> Main memory

hy

ierarc

CacheH

o
=
)
-
"
e
- ¥
)
—cf

S

@
=
T

LY TNELTIT]

Aiowapyaaq.

gn

-5
o=

Scan AIE

s !..lﬂgm-cpde

Memory Controller

b ‘ i
| O i

SR

mh«?‘....';e
§ ﬁa

{ Eﬂuuuwlhmmu

Thenares

General Cache Concepts

Small Example

* Cache keeps a copy of data from main memory

Cache hit and misses

* Cache Hit
* Data is requested and it is in the cache

* Cache Miss
* Data is not in the cache and must be fetched from main memory

* So ideally, we want lots of cache hits!
* We want to take advantage of these faster memory accesses!

* This may also be a good metric to quantify locality of our
programs.

Cache Hit

8 Load 8 - 8 is in the cache this
is good!

Cache Miss

0 Load O - 0 is not in the cache!

Cache Miss

O Load O - Fetch from main memory
and move to the cache (where

Note on Fetching

* It is almost always worthwhile to
put data from memory into cache

* Memory access latency >> cache
access latency

* Memory access is over 10X
slower

* The exact algorithm on how to
replace and remove items depends
on your policy.

4 3) 6 14
8 9 10 11
12 13 14 15

Policies
* Now how I choose where to put that block is based on:

* Placement Policy
* Determine where blocks of memory go in the cache

* Replacement Policy
» Determines which block gets evicted when we run out of room.

* These policies in general are very simple! We usually do not want a
complicated scheme that takes more processing power!

Sample Replacement Policies

2 Policies
2.1 Bélady's Algorithm
* Random - Just randomly remove 2 e ek 55
Something 2.3 Last In First Out (LIFO)

2.4 Least Recently Used (LRU)
2.5 Time aware Least Recently Used (TLRU)P!

* LeaSt Recently Used (LRU) - 2.6 Most Recently Used (MRU)
Move out the ygungest item. 2.7 Pseudo-LRU (PLRU)

2.8 Random Replacement (RR)
2.9 Segmented LRU (SLRU)

* Here are some more: 2.10 Least-Frequently Used (LFU)
L . Lo 2.11 Least Frequent Recently Used (LFRU) [']
* https://en.wikipedia.org/wiki 212 LFU with Dynamic Aging (LFUDA)
/Cache replacement policies oo s plies s sl

2.15 Clock with Adaptive Replacement (CAR)
2.16 Multi Queue (MQ) caching algorithm|Multi Queue (MQ)
2.17 Pannier: Container-based caching algorithm for compound objects

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

LRU Example | A-D added, ()'s represent age bit

LRU = Least Recently Used (Iltem with youngest age)

A(0)

E4) | B(1) | C(2) | DE)

A(0) | B(1)

I} E@4) | B(1) | c2 | D)
A0) | B(1) | ¢2)

A0) | B() | c@ | D)

Cache Misses

* Cold (Compulsory) Miss

* First time you access a cache
(e.g., when you start a program)

* Capacity Miss
* Set of the things you want to keep is larger than the cache size

* Conflict Miss
* Cache is large enough, but multiple data map to the same block.

- E.g., pltacement/alignment of data prevents different data to
coexis

Virtual Memory and
Memory Management Unit (MMU)

Early Computers

* Computers historically were really good at just doing one thing

* S0 a computer's memory stored the operating system and whatever
program was currently running in memory

0KB

Operating System
(code, data, etc.)

64KB

Current Program
(code, data, etc.)

max

Sharing Physical Memory

* Later computer operators wanted to run more
than one program at a time

* S0 as memory expanded, multiple processes
could be loaded into fixed size chunks to run.

* And we have talked about how processes
context switch and make this possible.

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

More efficient memory

* Eventually, programmers did not want to have a
“fixed” size memory block.
* Maybe one process needed more or less
memory than the other

* Also memory size was limited but wanted to run
more programs

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

More efficient memory

* Eventually, programmers did not want to have a
“fixed” size memory block.
* Maybe one process needed more or less
memory than the other

* Also memory size was limited but wanted to run
more programs

* How can we enable flexibly-sized processes?
* Virtual memory could be the solution

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

Virtual Memory concept

* What do we mean by virtual memory?
* Processes use virtual (or logical) addresses
* Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory
OXFFFF

0x0000

Virtual Memory concept

* What do we mean by virtual memory?
* Processes use virtual (or logical) addresses
* Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory
OXFFFF

0x0000

Virtual Memory concept

* What do we mean by virtual memory?
* Processes use virtual (or logical) addresses
* Virtual addresses are translated to physical addresses

Process’ View of Physical Memory
Virtual Memory (Reality)

OXFFFF OXFFFF
Memor

Process 3

x0000

0x0000 We do not need to map the entire virtual0
address space to the physical memory

Virtual Memory concept

* What do we mean by virtual memory?
* Processes use virtual (or logical) addresses
* Virtual addresses are translated to physical addresses

Process’ View of Physical Memory
Virtual Memory (Reality)

OXFFFF OXFFFF
Memor

Process 3

Virtual Address

0x0000 We do not need to map the entire virtualO
address space to the physical memory

x0000

Virtual Memory concept

* What do we mean by virtual memory?
* Processes use virtual (or logical) addresses
* Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory

OXFFFF

0x0000

Physical Memory
(Reality)

Maglc?al Address FEF Kernel
Translation Black Box
Memor

|
< 0x0000

We do not need to map the entire virtual
address space to the physical memory

Introducing the Memory Management Unit (MMU)

* We still retrieve memory from main memory

* BUT, there is an additional translation step that occurs in the Memory
Management Unit (MMU)

Main memory

CPU Chip

Virtual address Physical address
(vA) (PA)
CPU > MMU 7
4100
1\

\ 4
Q:NDD BWNES
—_—

:
[y

Data word

Memory Management Unit (MMU)

* MMU'’s job is to figure out (i.e. translate) the mappings from virtual
memory address to physical memory address
* MMU moves memory in units called ‘pages’
* A page size varies by architecture and configuration settings
* A common page size 4096 bytes (i.e. 4KB)

Main memor Y

CPU Chip

Virtual addrss Physiyal address

(VA)
CPU ——vxvi—> MMU
4100

Jbl>
0N B NS
N——

g
=

Data word

Memory Management Unit (MMU)

CPU Chip
Virtual address
(VA)
CPU
4100

CPU requests
some virtual

address (e.g.

MMU

Physical address
(PA)

Main memory

-

A 4
0N W B MNBe
—

0x0001 in a
program)

Data word

Memory Management Unit (MMU)

Main memory

0:
CPU Chip : k-
Virtual address Physical address ;
(VA) (PA) ’
CPU | MMU 7 > 4
| 4100 T
6:
7 &
MMU grabs 5
this address
(0x0001) M-1:

Data word

Memory Management Unit (MMU)

Main memory

0
CPU Chip 5 |
Virtual address Physical address ; |
(VA) (PA) ’
CPU > MMU D 4
4100 £ 5
A

MMU
translates to
the actual
physical

address
(OxFBO1)

Data word

Memory Management Unit (MMU)

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
(VA) (PA) X
CPU > MMU 7 > 4:
4100 5:
V4

6:
7 -
8:

Data is retrieved by process (and
the process does not really care N

about the true address)

Data word

Virtual Memory

Three Virtual Memory Advantages

1. Uses main memory efficiently
2. Simplifies memory management (for application developers)

3. Isolates address spaces

Why Virtual Memory (1/3)

1. Uses main memory efficiently

* Use physical memory as a “cache” for parts of a virtual address
space

* Not all data in the virtual address space may be mapped to
physical memory and some may be in disk

CPU Chip

PA]
CcPU > MMU " —

o

=
NN NS
[——

Why Virtual Memory (2/3)

2. Simplifies memory management (for application developers)

* Each process gets the same linear address space
* This is how we have always thought of memory at this point
* Our programs each have a simple linear address space
* This is also (arguably) easier for the Operating System to manage

|
e O O A
ear array or memo t i

Why Virtual Memory (3/3)

3. Isolates Address Spaces
* A process is sandboxed in the virtual address space

* One process cannot interfere with another
* User’s program cannot access kernel information and code.

* We do not need to memorize specific addresses

* (e.g. where some device that is plugged in is located versus some
other memory)

So here’s another high level view

* The kernel gets a large chunk of memory
* Roughly the top 1-2 GB of virtual address

space for Linux.

* We don't want anyone else to touch this

space.

* But the rest of the virtual addresses are for us,

the users.

* We call these user space addresses for

user space processes. ‘

3GB -

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

BSS segment
Uninitialized static variables, filled with zeros
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

OXFFFFFFFF

CONFIG_PAGE_OFFSET
(e.g. 0xC0000000)

0xCc0000000 == TASK_SIZE

i Random stack offset
~ RLIMIT_STACK (e.g., 8MB)

:- Random mmap offset

end_data

start_data
end_code

0x08048000
]

0x00000000

Kernel Addresses

User space Addresses
for user space
processes

#1 Use Main Memory efficiently

Some terminology for Address Spaces (1/2)

* We refer to a Linear Address Space as

* Order of contiguous non-negative integer addresses
« {0,1,2,3,..}

* A’'page’ of memory is some fixed size
* Typically 4096 bytes (4KB)

Some terminology for Address Spaces (2/2)

* Virtual address space:

e Set of N = 2" virtual addresses
« {0,1,2,3,..., N-1}

* Physical Address Space

* Set of M = 2™ physical addresses
 {0,1,2,3,..., M-1}

* Okay, so this means we really have 2 memory addresses spaces to keep
track of: Virtual and Physical

Two Address Spaces

* Physical Address Space
* Is used by the hardware

* Virtual Addresses Space
* Used by the software
* Again, this is what we are familiar with
* The exact translation happens in hardware for us by the MMU

Virtual Memory to assist with caching (1/5)

* Conceptually, virtual memory is an array of contiguous bytes stored
on disk (and memory pages indeed gets swapped out to disk)

* The contents of these arrays are cached in physical memory

Virtual memory

VPO
VP1

VP 2™P-1

Virtual pages (VPs)
stored on disk

Unallocated

Cached

Uncached

Empty

\-

Unallocated

Cached

Empty

Uncached

g

Cached

Empty

Uncached

M-1

N-1

Physical memory

PPO
PP1

PP 2mp-1

Physical pages (PPs)
cached in DRAM

Virtual Memory to assist with caching (2/5)

* Conceptually, virtual memory is an array of contiguous bytes stored
on disk (and memory pages indeed gets swapped out to disk)

* The contents of these arrays are cached in physical memory

| am taking
these large

‘blocks’(pages)
of memory

Virtual memory

VP 0 | Unallocated 3

VP 1 | Cached

Uncached

Unallocated

Cached

Uncached

Cached

VP 2"-P-1 | Uncached

N-1

Virtual pages (VPs)

stored on disk

Physical memory

\ Empty

Empty

T [

M-1

PPO
PP1

PP 2mP-1

Physical pages (PPs)
cached in DRAM

Virtual Memory to assist with caching (3/5)

* Conceptually, virtual memory is an array of contiguous bytes stored
on disk (and memory pages indeed gets swapped out to disk)

* The contents of these arrays are cached in physical memory

Virtual memory Physical memory
VP 0 | Unallocated 3
VP 1 [Cached I Empty |PPO
Uncached \ PP1
Unallocated Empty
Cached
Uncached >~< Empty
Cached PP 2m-P-1
VP 27P-1 | Uncached i prt
They are stored on _ _
our slow disk Virtual pages (VPs) Physical pages (PPs)

stored on disk cached in DRAM

Virtual Memory to assist with caching (4/5)

* Conceptually, virtual memory is an array of contiguous bytes stored
on disk (and memory pages indeed gets swapped out to disk)

* The contents of these arrays are cached in physical memory

Virtual memory Physical memory

VP 0 | Unallocated 3

VP 1 | Cached m ‘ ’
e | e P large block (‘page’) of

Unallocated — memory into faster

Cached
Uncached ><: Empty
Cached PP 2mp-1

VP 2"-P-1 | Uncached

Now | have put this

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

Virtual Memory to assist with caching (5/5)

* Conceptually, virtual memory is an array of contiguous bytes stored
on disk (and memory pages indeed gets swapped out to disk)

* The contents of these arrays are cached in physical memory

Virtual memory

Physical memory

VP 0 | Unallocated 3
VP 1 [Cached [Empty |PPO
Uncached \ PP1
Unallocated Empty
Cached
Uncached >< Empty
Cached PP 2m-P-1
VP 27-P-1 | Uncached i prt .
Our DRAM s faster than
Virtual pages (VPs) Physical pages (PPs) disk

stored on disk

cached in DRAM

Swap Space

* Key idea:

Take frames from physical memory and swap (write) them to disk
* This frees up space for other code and data

* Load data from swap back into memory on-demand

o If a][process attempts to access a page that has been swapped
out...

* A page-fault occurs and the instruction pauses

* The OS can swap the frame back in, insert it into the page table,
and restart the instruction

Swapping Example
OxFFFF Kernel

Memor

* Suppose memory is full o

Process 3

Process 2

Hard
Drive

0x0000

Swapping Example
OxFFFF Kernel

Memor
d

* Suppose memory is full :)
rocess

* The user opens a new program -
Process 5

Process 3

Process 2

Hard
Drive

0x0000

Swapping Example
OxFFFF Kernel

: M
Active W= ot

Process 4

* Suppose memory is full

* The user opens a new program
p p g Process 5]

Process 3
Active
Process 2
Hard
oll> Drive

0x0000

Swapping Example
OxFFFF Kernel

Memor

* Suppose memory is full

Process 4

* The user opens a new program

I
* Swap out idle pages to disk Process 3
Process 2
Hard
Process 5 Drive

0x0000

Swapping Example

Memor

* Suppose memory is full

* The user opens a new program

* Swap out idle pages to disk DraraeaE B
* If the idle pages are accessed, page]
them back in Process 2 Process 4
| Hard
Process 5 Drive

0x0000

Introducing the Page Table!

* A page table keeps track of the mapping between virtual and physical
memory addresses.

* Page table exists per process

Program Page Table DRAM
Virtual Address space maps VA= PA Physical Address space
Processor

1d R3, 12.4(RO)

4

1d R2, 512(Re)

ps512, 12
P12y PA 1,

786 disk)
§ 1024 2 ‘
Disk & g

|

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!

Our process
requests some
address (which

is actually a
virtual address)

Program
Virtual Address space

Processor

1d R3, 12.4(R0)

1d R2, 512(R0)

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!

The Page
* A page table keeps track of thEECCRIUEREEE between virtual and physical

memory addresses. ustothe
real physical

* Page table exists per proC U

e ——

512, 12
786 disk T
1024 2

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!

* A page table keeps track of the mapping betweUshE and physical

retrieve the
memory addresses. seial e

_ d
* Page table exists per process from DRAM.

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c

Introducing the Page Table!

Now remember, we are actually
* A page table keep gl AR B Ll Ll
memory addresse

ual and physical

(Otherwise we would have lots of 1
byte entries--which would make our
page table huge!)

Program Page Table DRAM
Virtual Address space maps VA= PA Physical Address space
Processor

1d R3, 12.4(RO)

* Page table exists [

1d R2, 512(Re)

p512 12
LS PA 1

786 disk T 2
1024 2
Disk £

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c

(Again) Enabling Data Structure: Page Table

* We divide memory into pages
* Typically 4 KB for 1 page

* A page table then stores the

mappings from a virtual page to its
physical page address

Physical page
number or
Valid disk address
PTEO| 0 null

mlo|lo|r|lo|k|=
]
/
/

e VP7
i VP4
—

null 3 ¢ Virtual memory

Physical memory
(DRAM)

VP 1
VP2

2 :

N ™ (disk)
PTE 7 LN T
Memory resident ~~ Y

page table T T

i .]

N VP4

VP 6

VP 7

1, Computer Systems: A Programmer’s Perspective, Third Edition

PPO

PP 3

Enabling Data Structure: Page Table

These pages

are referenced
in DRAM

* We divide memory into pages e i
. Valid disk address VE REY
* Typically 4 KB for 1 page Preofolmil__J—~ -
= . ‘1 VP 4 PP3
g :/_l Virtual
null P irtual memory
* A page table then stores the G i (disk)
. . . PTE 7 ¢ "~ e
mappings from a virtual page to its ; emm——rre S N
physical page address e IS
RS VP4
b VP 6
VP 7

1, Computer Systems: A Programmer’s Perspective, Third Edition

Enabling Data Structure: Page Table

* We divide memory into pages
* Typically 4 KB for 1 page

* A page table then stores the

mappings from a virtual page to its
physical page address

Physical memory
Physical page

(DRAM)
number or St
Valid disk address PPO
VP2
PTEO[0 null] S
1 Cai VP4 PP 3
1 o
0 * _—
1] L
0 null > Virtual memory
0 . -~ (disk)
PTE7[1 o« 7
Memory resident
page table A
(DRAM) N w3 |
.

These pages are
not in DRAM, but

page table points to
where on disk
virtual memory is

Enabling Data Structure: Page Table

. e . . Physical memory
* We divide memory into pages e (ORAM)
. Valid disk address yEL PPO
* Typically 4 KB for 1 page PIEO[0] mal ZF
i :;/ X PP3
1 e
0 null S ¢ Virtual memory
* A page table then stores the 0 2 (disk)
: . . PTE7[1 S N
mappings from a virtual page to its e S &
physical page address g S B
o | VP4
null or VP6
2, | nva I |d rammer’s Perspective, Third Edition vP7

pages

Page Hit

* Just like a cache hit, we see if our page is in DRAM

| Virtual address |

Physical page
number or

Valid disk address

PTEO

0

PTE?7

Il

null e ¢

.‘/ \\\

RICIO RO |- |-

o
~
~

Memory resident “~ <
page table
(DRAM)

null ? B
Z—

/

Physical memory
(DRAM)

VP 1
VP 2

VP4

Virtual memory
(disk)

VP 1
VP 2
VP 3
VP4
VP 6
VP 7

PPO

PP 3

Page miss causes a Page Fault

* If our page is not in memory, then we get a page fault.

* (VP 6 for example is not in our DRAM, but 1,2,7, and 4 are)

| Virtual address |

Physical page
number or
Valid disk address

PTEO| 0 null

— |

>

o

null >F . L

mlo|lo|r|o |k |x

PTE 7 o T~

~
Memory resident >~ _

page table
(DRAM)

/
7 /
Il I

Virtual memory
(disk)

VP 1
VP 2
VP 3
VP 4
VP 6
VP 7

PP3

Page Fault Example

* User attempts to write to memory location

int a[1ee00];

main(){

a[500] = 13;

1
2
3
4
5
6
7

}

* OS may recognize this particular address is invalid.

* Invalid in the sense of the OS noticin
“hey, this page is not in our page table”
* The ﬁroper behavior is for the OS to do something
(i.e. handle this exception)

* This involves evicting some page we do not need (some victim)
* The instruction that caused the fault is then restarted
* We get a page hit and move on.

A walkthrough

Physical page
number or

Valid disk address

PTEO| 0

null

A 4

null D ¢

(3 / B

mlolo|x|o|=|=

PTE7

o«
~
~

Memory resident ~~ o
page table
(DRAM)

7

Physical memory
(DRAM)
VP 1
VP2

vP7
VP4

Virtual memory
(disk)
VP 1
VP 2
VP 3
VP4
VP 6
VP 7

PPO

PP 3

PTEO

We try to

access/write
some data

A walkthrough

Physical page
number or

Valid disk address

0

rlolo|r|e |k |-

Memory resident ~~ a
page table
(DRAM)

(DRAM)

PPO

PP3

A walkthrough

Physical page (DRAM)
number or
Valid disk address x: PPO
. PTEO]| 0 null
The page however is 1 — B .
invalid (See the ‘0’), so 1 =
0 e
now OS has to handle 1 — .
0 null D ¢ Virtual memory
our page fault D - (disk)
Memory resident \\ Sso
PesE oty]
(DRAM) . ==
VP 6

0

A walkthrough

Physical page
number or

Valid disk address

[)
0 abo 4

~
S

<
null e §

.~‘/ TR

PTE7

mlolo|m

o« "~

Memory resident “~ o
page table
(DRAM)

7

Physical memory
(DRAM)
VP1
VP2

A
VP4

Virtual memory
(disk)
VP 1
VP2
VP 3
VP4
VP 6
VP 7

PPO

PP3

A walkthrough

. ’ Physical memory
Physical page

(DRAM)
number or =
Valid disk address 5 PP O
PTEO| 0 null
L == s
- PP3
1 — | Update to VP3
> 1 -
0 . _
0 null "~ Virtual memory
0 o2 (disk)
< R
PTE7(1 o T~ | s T
Memory resident ~~_ \\ VP2
page table Mooy
(DRAM) S, Wy vey

VP4

Key point: Waiting until the miss to copy the page to —

DRAM is known as demand paging —

’
/
/
7
4

VP4 as a result is evicted

A walkthrough

Physical page
number or

Valid disk address

PTEO

PTE7

0

null

— |
«—

—
.

~
null "~

0\/ Sk

rlolo|o|k |~ |~

/\\\ ~

~
Memory resident ~~_
%

page table
(DRAM)

Physical memory
(DRAM)
VP1

VP2

vP7

VP3

Virtual memory
(disk)

PPO

PP 3

0

A walkthrough

Physical page
number or

Valid disk address

PTEO

PTE7

0

null

rlofo|o|k |~ |~

Memory resident “~ -
page table
(DRAM)

Physical memory
(DRAM)
VP 1

VP2

VP7

VP3

Virtual memory
(disk)

PPO

PP 3

Question: Page Faults

* When your program executes, do you get a lot of page faults?

Question: Page Faults

* When your program executes, do you get a lot of page faults?

* Use"perf stat ./myProgram”

* Observe the different counts of the page-faults and
context-switches

Answer and New Question

* When your program executes, do you get a lot of page faults?

* Typically yes!
* But this is okay because a lot of the nitty gritty is handled for us.
* Generally we do not try to predict the access patterns of page accesses

Answer and New Question

* When your program executes, do you get a lot of page faults?

* Typically yes!
* But this is okay because a lot of the nitty gritty is handled for us.
* Generally we do not try to predict the access patterns of page accesses

* After our compulsory misses, we generally do pretty well. Why?

* Locality to the rescue!

« If we have a page of memory in our DRAM Cache, typically where
we are working (our working set) only on a small piece of data at a
time in our programs.

« If the data we are working on is larger than our main memory
size, then we get thrashing!

* i.e. lots and lots of page swaps!

Quick Summary of Virtual Memory so far

* We found we could access our memory and organize them into 4096
byte pages
* (Again, usually 4096 bytes per page, but this can vary by OS)

* We could then access these pages by looking in a page table

* These individual pages can be cached in the DRAM

* This is a trend in computer science (i.e., we've seen this a couple of
times), figure out how to cache things and speed up lookup times

Three Virtual Memory Advantages

1. Use Main memory efficiently
2. Simplifies memory management (for application developers)

3. Isolates Address Spaces

#2 Simplifies memory management
(for application developers)

Virtual Memory for Memory Management

* Each process has its own virtual address space

* This means we can view (within a process), memory as a linear
array.

* In reality, we known we have many pages scattered around.

* (This could cause locality issues...so the OS needs to choose
good mappings)

Example of page mappings

Address
translation

Our Phvsical Address Space

0

PP2

Virtual 9
Address VP1
Space for VP2
Process 1:

N-1
Virtual 0
Address VP 1
Space for VP2 ¢

Process 2:

N-1

PP8

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

All of my

physical
memory is
here
Addres:s 0 Physical
VP1 translation Address
VP 2 —> PP2 Space
ees (DRAM)
= (e.g., read-only
PP 6 library code)
—>(PP8
VP1
VP 2
M-1

And our
process sees
its memory

stored linearly
here

- 0 Address 0
Virtual ;=
Address VP 1 translation
Space for VP2 | —
Process 1:
N-1
PP 6
Virtual 9 _
—> PP8
Address VP1
Space for VP2 }
Process 2:
N-1 M-1

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

VP1

Address 0
translatiqg

VP2

VP 1

Question:
How can

this occur?

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

N-1

N-1

A . .: dld .. -..
VP 1 tran .o. ‘ ap to differe
VP2
PP6
PP8
VP1
M-1

ress
pace
(DRAM)

(e.g., read-only
library code)

Virtual Memory supports Linking and Loading

* To our program, the virtual address
space is roughly the same

* code, data, and heap sections start
at same address

0x400000

Kernel virtual memory

User stack
(created at runtime)

v
T

Memory-mapped region for
shared libraries

Memory
I invisible to
user code

«—%rsp
(stack
pointer)

A

< brk

L~

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Loade
from
the

Read-only segment

\(.\init, .text, .rodata)
1

exécutable
file

Unused

0

Virtual Memory as Memory Manager Summary

* So for each of these virtual pages,
they map to a physical page (PP) i

Address
Space for

Process 1:

* Processes store any number of
virtual pages at a given time. —

Address

* And sometimes these virtual s.ceor
pages (VP) are shared if
read-only code (e.g. a library
of code--which will not
change!)

Process 2:

0

VP1
VP2

0

VP1
VP 2

Address
translation

0

PP 2

PP 6

PP 8

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

#3 Isolates Address Spaces

Virtual Memory protection

* Depending on the access, the MMU (Memory Management Unit)
determines which pages can be executed.

Physical
Processi: SUP READ WRITE EXEC Address Address Space
VP O: No Yes No Yes PP 6
VP 1: No Yes Yes Yes PP4 k
VP 2: Yes Yes Yes No PP2 g
. PP 4
L]
PP 6
Process j SUP READ WRITE EXEC Address PP S
VPO: | No Yes No Yes PP 9 / > ppP9
VP1:| Yes Yes Yes Yes PP 6
VP2:| No Yes | Yes | Yes PP 11 > PP11

Revisiting our picture - One missing component

0 Address 0

Virtual lati Physical
Address VP 1 transiation Address
Space for VP 2 —> PP2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)

" 0
Virtual —> PP8
Address VP 1
Space for VP 2
Process 2:

N-1 M-1

Revisiting our picture - One missing component

0 Address o

Virtual lati Physical
Address VP1 [— ir anslation Address
Space for VP 2 —> PP2 Space
Process 1: (DRAM)
N-1 .
oS (e.g., read-only
PP 6 library code)
. 0 O
Virtual —> PP8
Address VP 1
Space for VP 2
Process 2:

N-1 M-1

Address Translation Example

Address Translation - Notation

* Basic Parameters
* N=2": Number of addresses in virtual address space
* M=2": Number of addresses in physical address space
* P=2P: Page size (bytes)

* Components of virtual address (VA)
* VPO: Virtual page offset
* VPN: Virtual page number [what we are looking for]

* Components of physical address (PA)
* PPO: Physical page offset (same as VPO)
* PPN: Physical page number

Address Translation with Page Table

Here’s a virtual address |
want to translate to its

Page table
base register (PTBR)
(CR3 in x86)

physical address

n-1

Virtual address

p p-1 0

Virtual page number (VPN)

Virtual page offset (VPO)

Page table

_ Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

L

Page not in memory €
(page fault)

m-1

A

Valid bit=1

y

P P'I A 4

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Address Translation with Page Table

This same lower order
index of bits, will map

to the same physical
address bits.

Virtual address
Page table =
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)
Page table
_ Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory €
(page fault)

Valid bit=1

m-1

v o p-1 v 0

Physical page number (PPN) Physical page offset (PPO)

Physical address

Address Translation with Page Table

4096 byte page,
means 12 bits are used

(to tell us where in the

Virtual address

p p-1

page we are)

Virtual page offset (VPO)

Page table i
base register (PTBR) Virtual page number (VPN)
(CR3 in x86)
Page table
_ Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

B

Page not in memory €
(page fault)

Valid bit=1

m-1 v

p p-1 v 0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Address Translation with Page Table

So now we translate our
virtual page number(VPN)

to physical page
number(PPN)

n-1

p p-1

0

Virtual page offset (VPO)

Page table
base register (PTBR) Virtual page number (VPN)
(CR3 in x86)
Page table
_ Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

B

Page not in memory €
(page fault)

Valid bit=1

m-1 v

p p1 A 4

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Address Translation with Page Table

Virtual address

n-1 p p-1 0
Page table
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)

Page table
_ Valid Physical page number (PPN)

r

We can now usé ourVPN as an
index into our page table

Valid bit = 0:
Page not in memory € Valid bit=1
(page fault)
m-1 v P p-l Y 2

Physical page number (PPN) Physical page offset (PPO)

Physical address

Address Translation with Page Table

Page table
base register (PTBR)
(CR3 in x86)

Virtual address
n-1

p p-1

0

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
_ Valid Physical page number (PPN)

Finally we know if(’)u'r' pége IS
valid if this is a 1 (or invalid if 0)

Valid bit = 0:

rd

Page not in memory <€
(page fault)

Valid bit=1

m-1 v

P p'1 4

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Address Translation with Page Table

p p-1

0

Virtual page offset (VPO)

Virtual address
Page table i
base register (PTBR) Virtual page number (VPN)
(CR3 in x86)
Page table
_ Valid Physical page number (PPN)

Physical page table

address for the current

process

Page Table returns us the
Valid bit=1

correct physical frame #, and we
have our physical address

~

p p-1 A 4

Physical page number (PPN) I Physical page offset (PPO)

Physical address

Address Translation with Page Table

Virtual address

n-1 p p-1 0
Page table
| base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)
Not.e. A special Poge tabie
r99|3ter stores a _ Valid Physical page number (PPN)
pointer to the Physical page table
address for the current
actual page rooass
table.
Valid bit = 0:
Page not in memory € s
Risge taalel Valid bit=1
m-1 v p p-1 v 0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

This looks like a LOT of work!

* There is a bit going on--remember what our goals are though

* We want our operating system to have the ability to handout more
memory as needed.
* And often this memory is not in nice sequential order

* And often when there is a lot of work to be done, we have special
hardware for it
* Let us take a look at the Memory Management Unit (MMU)!

Address Translation: Page Hit

1) Processor sends virtual address to MMU

word to processor

1. CPU attempts
some MOV

instr

CPU Chip PTEA
o -
CPU > MMU e Cache/
A PA > Memory

Data

Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from

page table in memory 2) Get page
table entry

address

CPU Chip HAER
0 -
CPU > MMU O Cache/
A PA > Memory
Data

Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from

page table in memory 2) Get page
table entry

address

Page table
Valid Physical page number (PPN)
CPU Chip
>
CPU L ; —I |

Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from
page table in memory

3) Now read
the memory
for the Page

table entry

CPU Chip

MMU

0
v
c
\ 4

Cache/
5| Memory

O O

Data

Address Translation: Page Hit

4) MMU Sends physical address to cache/memory

CPU Chip

4) Now get
the physical

address

Data

Memory

Address Translation: Page Hit

5) Cache/memory sends data word to processor

5) Finally send
CPU Chip data to
B processor from
CcPU cache/memory

Address Translation: Page Hit

How many
memory
accesses are
here? (i.e

arrows into
memory)

CPU Chip -4

A 4

VA - <
CPU > MMU e Cache/
]‘ PA 5| Memory

Data

Address Translation: Page Hit

How many
memory
accesses are
here? (i.e
arrows into

memory)

CPU Chip
o
A ~
CPU > MMU e Cache/
]‘ 3 G,\Ilemory
Data

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU Fetches Page Table Entry from page
table in memory

4) Valid bit is zero; page fault
exception!

5) Handler identifies victim (pages it
out to disk)

6) Handler pages in new page and
updates Page table entry in memory

7) Handler returns to original process,
restarting from our ‘faulty’ instruction

CPU Chip

CPU

> MMU e

Page fault handler

Cache/
Memory

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU Fetches Page Table Entry from page W -, N
table in memory - @
. . . CPU Chip : PQA Victim page
4) Valid bit is zero; page fault o e | ©
exception! P o ™[0 || | ™
(6]

5) Handler identifies victim (pages it
out to disk) 7) At this point,

we will get a hit,
and resume
(See previous
“Page Hit”

6) Handler pages in new page and
updates Page table entry in memory

7) Handler returns to original process,
restarting from our ‘faulty’ instruction

slides)

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU Fetches Page Table Entry from page W -, N
table in memory - @
. . . CPU Chip : PQA Victim page
4) Valid bit is zero; page fault o e | ©
exception! P o ™[0 || | ™
(6]

5) Handler identifies victim (pages it
out to disk) 7) At this point,

we will get a hit,
and resume
(See previous
“Page Hit”

6) Handler pages in new page and
updates Page table entry in memory

7) Handler returns to original process,
restarting from our ‘faulty’ instruction

slides)

How can we speed up the process?

Let’s speed up memory accesses

* Translation Lookaside Buffer (TLB)
* It is called a buffer, but really it is a cache.

* It's a set-associative hardware cache in the Memory
Management Unit (MMU).

* Contains complete page table entries for (some small amount) of
pages.
* More simply defined:

* The TLB - stores recent translations of virtual memory to physical
addresses in a table

* (The Translation Lookaside Buffer is part of the MMU system)

Address Translation - Notation

* Basic Parameters
* N=2": Number of addresses in virtual address space
* M=2":. Number of addresses in physical address space
* P=2P: Page size (bytes)

* Components of virtual address (VA)
* TLBI: TLB index
« TLBT: TLB tag X Twonewiomns
* VPO: Virtual page offset
* VPN: Virtual page number

* Components of physical address (PA)
* PPO: Physical page offset (same as VPO)
* PPN: Physical page number

Accessing the Translation Lookaside Buffer (TLB)

* This looks quite familiar to our set-associative cache!

T = 2t sets
VPN

TLBT matchestag — ——
of line within set I“-l p+t p+t-1 p p-1 0
| TLB tag (TLBT) | TLB index (TLBI) | VPO

seto |[v] [t PTE [v] [tag | [pe_]

TLBI selects the set

set1 [[v] [tag J [pre]| {[v] [tee][pre_]
]

setT-1 [[v] [[tag | [P]| [[v] [tee][Pe]

Accessing the Translation Lookaside Buffer (TLB)

* This looks quite familiar to our set-associative cache!

T = 2t sets
VPN

e

TLBT matchestag —

of line within set I“'1 p+t p+t-1 p p-1 0
— TLB tag (TLBT) | TLBindex (TLBI) | VPO

seco [e]| [Cas]
Now we can alects the set
set 1 (I e it look in this
: cache and
sett1 |[v] (e] [_Pe_] i quickly find

valid page
table entries.

Translation Lookaside Buffer (TLB) Hit

* On a hit, we reduce by 1 memory access

* In practice, misses are rare
* We pay an extra memory access if so

CPU Chip

Only one

memory
access with

& hits
CPU

Cach
_ o ache/

Memory

v
=
<
c
v

Summary of Virtual Memory

* Programmers
* We see a process as owning a private linear address space
[easy to program]
* Our address space cannot be corrupted by other processes
[isolation]

* System view of virtual memory
* We use memory efficiently by caching our virtual memory pages
* Locality saves the day!
* Memory management and protection is significantly simplified
* Different configurations could exist, such that we have multiple

levels of paging.
* (As always, there are trade-offs!)

