
NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter 
Desnoyers’ lecture slides for the same course.



An Introduction to Caches



Cache
• Cache

• A smaller, faster storage device than the layer below
• A staging area for a subset of the data in a larger, slower device

• For each level in the memory hierarchy K
• K serves as a cache for the larger slower device at level K+1

• A memory hierarchy works because of locality
• Programs access data at level K more often than data at K+1
• With this, we can holds a lot of data at lower levels, and still 

access data at high speeds using higher level caches



Caches are everywhere!

• Registers (Instruction Cache)
• L1 cache
• L2 cache
• Translation Lookaside Buffer (TLB) 
•Virtual Memory
• Disk Cache
• Network buffer cache
• Browser cache
• Web Cache, CDNs, ...



Cache on Hardware

• CPU will look for data in Cache first

• Attempt to load into registers

• If not found, then will travel on 
System Bus -> I/O Bridge -> then to main memory 

Main memory

mov rax, [rbx + 0x10]



Cache Hierarchy





General Cache Concepts



Small Example

• Cache keeps a copy of data from main memory

8 9 14 3

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Cache

Main Memory



Cache hit and misses

• Cache Hit 
• Data is requested and it is in the cache

• Cache Miss 
• Data is not in the cache and must be fetched from main memory

• So ideally, we want lots of cache hits! 
• We want to take advantage of these faster memory accesses!
• This may also be a good metric to quantify locality of our 

programs.



Cache Hit

8 9 14 3

8 Load 8 - 8 is in the cache this 
is good!

Cache

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

0
Main Memory



Cache Miss

9 14 3

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Load 0 - 0 is not in the cache!

8
Cache

Main Memory

0



Cache Miss

0 14 3

1 2

Load 0 - Fetch from main memory 
and move to the cache (where 
exactly depends on policy)

8

0

Cache

Main Memory

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

0 1 2 3

0



Note on Fetching

• It is almost always worthwhile to 
put data from memory into cache

• Memory access latency >> cache 
access latency 

• Memory access is over 10X 
slower

• The exact algorithm on how to 
replace and remove items depends 
on your policy.

0 14 3

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8

0

Cache

Main Memory



Policies

• Now how I choose where to put that block is based on:

• Placement Policy 
• Determine where blocks of memory go in the cache

• Replacement Policy
• Determines which block gets evicted when we run out of room.

• These policies in general are very simple! We usually do not want a 
complicated scheme that takes more processing power!



Sample Replacement Policies

• Random - Just randomly remove 
something

• Least Recently Used (LRU) - 
Move out the youngest item.

• Here are some more:
• https://en.wikipedia.org/wiki

/Cache_replacement_policies

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies


LRU Example | A-D added, ()’s represent age bit 

LRU = Least Recently Used (Item with youngest age)



Cache Misses

• Cold (Compulsory) Miss 
• First time you access a cache 

(e.g., when you start a program)

• Capacity Miss 
• Set of the things you want to keep is larger than the cache size

• Conflict Miss 
• Cache is large enough, but multiple data map to the same block.

• E.g., placement/alignment of data prevents different data to 
coexist



Virtual Memory and 
Memory Management Unit (MMU)



Early Computers

• Computers historically were really good at just doing one thing

• So a computer's memory stored the operating system and whatever 
program was currently running in memory



Sharing Physical Memory

• Later computer operators wanted to run more 
than one program at a time

• So as memory expanded, multiple processes 
could be loaded into fixed size chunks to run.

• And we have talked about how processes 
context switch and make this possible.



More efficient memory

• Eventually, programmers did not want to have a 
“fixed” size memory block.

• Maybe one process needed more or less 
memory than the other

• Also memory size was limited but wanted to run 
more programs



More efficient memory

• Eventually, programmers did not want to have a 
“fixed” size memory block.

• Maybe one process needed more or less 
memory than the other

• Also memory size was limited but wanted to run 
more programs

• How can we enable flexibly-sized processes?
• Virtual memory could be the solution



Virtual Memory concept

• What do we mean by virtual memory?
• Processes use virtual (or logical) addresses
• Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory

Process 1
0x0000

0xFFFF



Virtual Memory concept

• What do we mean by virtual memory?
• Processes use virtual (or logical) addresses
• Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory

0x0000

0xFFFF

Process 1

All the memory 
belongs to me!



Virtual Memory concept

• What do we mean by virtual memory?
• Processes use virtual (or logical) addresses
• Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory

0x0000

0xFFFF

Process 1

All the memory 
belongs to me!

Kernel 
Memory

Process 1

Physical Memory
(Reality)

Process 2

Process 3

0x0000

0xFFFF

We do not need to map the entire virtual 
address space to the physical memory 



Virtual Memory concept

• What do we mean by virtual memory?
• Processes use virtual (or logical) addresses
• Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory

0x0000

0xFFFF

Process 1

Kernel 
Memory

Process 1

Physical Memory
(Reality)

Process 2

Process 3

0x0000

0xFFFF

We do not need to map the entire virtual 
address space to the physical memory 

Virtual Address



Virtual Memory concept

• What do we mean by virtual memory?
• Processes use virtual (or logical) addresses
• Virtual addresses are translated to physical addresses

Process’ View of
Virtual Memory

0x0000

0xFFFF

Process 1

Kernel 
Memory

Process 1

Physical Memory
(Reality)

Process 2

Process 3

0x0000

0xFFFF

We do not need to map the entire virtual 
address space to the physical memory 

Virtual Address

Physical Address

Magical Address 
Translation Black Box



Introducing the Memory Management Unit (MMU)

• We still retrieve memory from main memory

• BUT, there is an additional translation step that occurs in the Memory 
Management Unit (MMU)



Memory Management Unit (MMU)

• MMU’s job is to figure out (i.e. translate) the mappings from virtual 
memory address to physical memory address

• MMU moves memory in units called ‘pages’
• A page size varies by architecture and configuration settings
• A common page size 4096 bytes (i.e. 4KB)



Memory Management Unit (MMU)

CPU requests 
some virtual 
address (e.g. 
0x0001 in a 
program)



Memory Management Unit (MMU)

MMU grabs 
this address 
(0x0001)



Memory Management Unit (MMU)

MMU 
translates to 
the actual 
physical 
address 
(0xFB01)



Memory Management Unit (MMU)

Data is retrieved by process (and 
the process does not really care 
about the true address)



Virtual Memory



Three Virtual Memory Advantages

1. Uses main memory efficiently

2. Simplifies memory management (for application developers)

3. Isolates address spaces



Why Virtual Memory (1/3)

1. Uses main memory efficiently

• Use physical memory as a “cache” for parts of a virtual address 
space

• Not all data in the virtual address space may be mapped to 
physical memory and some may be in disk



Why Virtual Memory (2/3)

2. Simplifies memory management (for application developers)

• Each process gets the same linear address space
• This is how we have always thought of memory at this point
• Our programs each have a simple linear address space
• This is also (arguably) easier for the Operating System to manage



Why Virtual Memory (3/3)

3. Isolates Address Spaces

• A process is sandboxed in the virtual address space

• One process cannot interfere with another
• User’s program cannot access kernel information and code.

• We do not need to memorize specific addresses
• (e.g. where some device that is plugged in is located versus some 

other memory)



So here’s another high level view

• The kernel gets a large chunk of memory
• Roughly the top 1-2 GB of virtual address 

space for Linux.
• We don’t want anyone else to touch this 

space.

• But the rest of the virtual addresses are for us, 
the users.

• We call these user space addresses for 
user space processes.

Kernel Addresses

User space Addresses 
for user space 

processes

0xFFFFFFFF

CONFIG_PAGE_OFFSET
(e.g. 0xC0000000)

0x00000000



#1 Use Main Memory efficiently



Some terminology for Address Spaces (1/2)

• We refer to a Linear Address Space as
• Order of contiguous non-negative integer addresses

• {0,1,2,3,...}

• A ‘page’ of memory is some fixed size
• Typically 4096 bytes (4KB)



Some terminology for Address Spaces (2/2)

• Virtual address space:
• Set of N = 2n virtual addresses

• {0,1,2,3,..., N-1}

• Physical Address Space
• Set of M = 2m physical addresses

• {0,1,2,3,..., M-1}

• Okay, so this means we really have 2 memory addresses spaces to keep 
track of: Virtual and Physical 



Two Address Spaces

• Physical Address Space
• Is used by the hardware

• Virtual Addresses Space
• Used by the software
• Again, this is what we are familiar with
• The exact translation happens in hardware for us by the MMU



Virtual Memory to assist with caching (1/5)

• Conceptually, virtual memory is an array of contiguous bytes stored 
on disk (and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory



Virtual Memory to assist with caching (2/5)

• Conceptually, virtual memory is an array of contiguous bytes stored 
on disk (and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory

I am taking 
these large 
‘blocks’(pages) 
of memory



Virtual Memory to assist with caching (3/5)

• Conceptually, virtual memory is an array of contiguous bytes stored 
on disk (and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory

They are stored on 
our slow disk



Virtual Memory to assist with caching (4/5)

• Conceptually, virtual memory is an array of contiguous bytes stored 
on disk (and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory

Now I have put this 
large block (‘page’) of 
memory into faster 
memory (DRAM)



Virtual Memory to assist with caching (5/5)

• Conceptually, virtual memory is an array of contiguous bytes stored 
on disk (and memory pages indeed gets swapped out to disk)

• The contents of these arrays are cached in physical memory

Our DRAM is faster than 
disk



Swap Space

• Key idea: 

Take frames from physical memory and swap (write) them to disk
• This frees up space for other code and data

• Load data from swap back into memory on-demand
• If a process attempts to access a page that has been swapped 

out…

• A page-fault occurs and the instruction pauses

• The OS can swap the frame back in, insert it into the page table, 
and restart the instruction



Swapping Example

• Suppose memory is full

 

0x0000

0xFFFF Kernel 
Memory

Process 1

Process 2

Process 3

Process 4

Hard
Drive



Swapping Example

• Suppose memory is full

• The user opens a new program

 

0x0000

0xFFFF Kernel 
Memory

Process 1

Process 2

Process 3

Process 4

Hard
Drive

Process 5



Swapping Example

• Suppose memory is full

• The user opens a new program

 

0x0000

0xFFFF Kernel 
Memory

Process 1

Process 2

Process 3

Process 4

Hard
Drive

Process 5

Active

Active

Active

Idle



Swapping Example

• Suppose memory is full

• The user opens a new program

• Swap out idle pages to disk

0x0000

0xFFFF Kernel 
Memory

Process 1Process 2

Process 3

Process 4

Hard
DriveProcess 5



Swapping Example

• Suppose memory is full

• The user opens a new program

• Swap out idle pages to disk

• If the idle pages are accessed, page 
them back in 

0x0000

0xFFFF Kernel 
Memory

Process 1

Process 2

Process 3

Process 4

Hard
DriveProcess 5



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and physical 
memory addresses. 

• Page table exists per process

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and physical 
memory addresses. 

• Page table exists per process

Our process 
requests some 
address (which 
is actually a 
virtual address)

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and physical 
memory addresses. 

• Page table exists per process

The Page 
Table maps 
us to the 
real physical 
address in 
DRAM

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and physical 
memory addresses. 

• Page table exists per process

And we 
retrieve the 
actual data 
we need 
from DRAM.

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



Introducing the Page Table!

• A page table keeps track of the mapping between virtual and physical 
memory addresses. 

• Page table exists per process

Now remember, we are actually 
looking up ‘pages’.

(Otherwise we would have lots of 1 
byte entries--which would make our 
page table huge!)

Source: https://www.youtube.com/watch?v=KNUJhZCQZ9c



(Again) Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page to its 
physical page address



Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page to its 
physical page address

These pages 
are referenced 
in DRAM



Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page to its 
physical page address

These pages are 
not in DRAM, but 
page table points to 
where on disk 
virtual memory is



Enabling Data Structure: Page Table

• We divide memory into pages
• Typically 4 KB for 1 page

• A page table then stores the 
mappings from a virtual page to its 
physical page address

0 for 
null or 
invalid 
pages



Page Hit

• Just like a cache hit, we see if our page is in DRAM



Page miss causes a Page Fault

• If our page is not in memory, then we get a page fault.
• (VP 6 for example is not in our DRAM, but 1,2,7, and 4 are)



Page Fault Example 

• User attempts to write to memory location

• OS may recognize this particular address is invalid.
• Invalid in the sense of the OS noticing

“hey, this page is not in our page table”

• The proper behavior is for the OS to do something 
(i.e. handle this exception)

• This involves evicting some page we do not need (some victim)
• The instruction that caused the fault is then restarted
• We get a page hit and move on.



A walkthrough



A walkthrough

We try to 
access/write 
some data



The page however is 
invalid (See the ‘0’), so 
now OS has to handle 
our page fault

A walkthrough



Choose some victim to 
evict (How about VP4)

A walkthrough



Update to VP3

A walkthrough



VP4 as a result is evicted

A walkthrough



We execute 
where we left off 
and now see we 
have a valid 
page. a[500] is 
now 13.

A walkthrough



Question: Page Faults

• When your program executes, do you get a lot of page faults?



Question: Page Faults

• When your program executes, do you get a lot of page faults?

• Use”perf stat ./myProgram”
• Observe the different counts of the page-faults and 

context-switches



Answer and New Question

• When your program executes, do you get a lot of page faults?

• Typically yes!
• But this is okay because a lot of the nitty gritty is handled for us.
• Generally we do not try to predict the access patterns of page accesses



Answer and New Question

• When your program executes, do you get a lot of page faults?

• Typically yes!
• But this is okay because a lot of the nitty gritty is handled for us.
• Generally we do not try to predict the access patterns of page accesses
• After our compulsory misses, we generally do pretty well. Why?

• Locality to the rescue!
• If we have a page of memory in our DRAM Cache, typically where 

we are working (our working set) only on a small piece of data at a 
time in our programs.

• If the data we are working on is larger than our main memory 
size, then we get thrashing!

• i.e. lots and lots of page swaps!



Quick Summary of Virtual Memory so far

• We found we could access our memory and organize them into 4096 
byte pages 

• (Again, usually 4096 bytes per page, but this can vary by OS)

• We could then access these pages by looking in a page table

• These individual pages can be cached in the DRAM
• This is a trend in computer science (i.e., we’ve seen this a couple of 

times), figure out how to cache things and speed up lookup times



Three Virtual Memory Advantages

1. Use Main memory efficiently

2. Simplifies memory management (for application developers)

3. Isolates Address Spaces



#2 Simplifies memory management 

(for application developers)



Virtual Memory for Memory Management

• Each process has its own virtual address space

• This means we can view (within a process), memory as a linear 
array.

• In reality, we known we have many pages scattered around.
• (This could cause locality issues...so the OS needs to choose 

good mappings)



Example of page mappings

Process 1

Process 2

Our Physical Address Space



All of my 
physical 
memory is 
here



And our 
process sees 
its memory 
stored linearly 
here



Question: 
How can 
this occur?



Answer: Assume 
this is a fork(). As 
long as the data 
does not change 
(.rodata or 
library), no need 
to map to different 
data



Virtual Memory supports Linking and Loading

• To our program, the virtual address 
space is roughly the same

• code, data, and heap sections start 
at same address



Virtual Memory as Memory Manager Summary

• So for each of these virtual pages, 
they map to a physical page (PP)

• Processes store any number of 
virtual pages at a given time.

• And sometimes these virtual 
pages (VP) are shared if 
read-only code (e.g. a library 
of code--which will not 
change!)



#3 Isolates Address Spaces 



Virtual Memory protection

• Depending on the access, the MMU (Memory Management Unit) 
determines which pages can be executed.



Revisiting our picture - One missing component



Revisiting our picture - One missing component

How 
does 
this 
occur?



Address Translation Example



Address Translation - Notation

• Basic Parameters
• N=2n: Number of addresses in virtual address space
• M=2m: Number of addresses in physical address space
• P=2p: Page size (bytes)

• Components of virtual address (VA)
• VPO: Virtual page offset
• VPN: Virtual page number [what we are looking for]

• Components of physical address (PA)
• PPO: Physical page offset (same as VPO)
• PPN: Physical page number



Address Translation with Page Table
Here’s a virtual address I 
want to translate to its 
physical address



Address Translation with Page Table
This same lower order 
index of bits, will map 
to the same physical 
address bits.



Address Translation with Page Table
4096 byte page, 
means 12 bits are used 
(to tell us where in the 
page we are)

0000 0000 0000



Address Translation with Page Table
So now we translate our 
virtual page number(VPN) 
to physical page 
number(PPN)



Address Translation with Page Table

We can now use our VPN as an 
index into our page table



Address Translation with Page Table

Finally we know if our page is 
valid if this is a 1 (or invalid if 0)



Address Translation with Page Table

Page Table returns us the 
correct physical frame #, and we 
have our physical address



Address Translation with Page Table

Note: A special 
register stores a 
pointer to the 
actual page 
table.



This looks like a LOT of work!

• There is a bit going on--remember what our goals are though

• We want our operating system to have the ability to handout more 
memory as needed.

• And often this memory is not in nice sequential order

• And often when there is a lot of work to be done, we have special 
hardware for it

• Let us take a look at the Memory Management Unit (MMU)!



Address Translation: Page Hit

1) Processor sends virtual address to MMU

word to processor
1. CPU attempts 

some MOV 
instr



Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from 
page table in memory 2) Get page 

table entry 
address



Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from 
page table in memory 2) Get page 

table entry 
address



Address Translation: Page Hit

2, 3) MMU Fetches Page Table Entry from 
page table in memory

3) Now read 
the memory 
for the Page 
table entry



Address Translation: Page Hit

4) MMU Sends physical address to cache/memory

4) Now get 
the physical 
address



Address Translation: Page Hit

5) Cache/memory sends data word to processor

5) Finally send 
data to 
processor from 
cache/memory



Address Translation: Page Hit

How many 
memory 
accesses are 
here? (i.e 
arrows into 
memory)



Address Translation: Page Hit

How many 
memory 
accesses are 
here? (i.e 
arrows into 
memory)



Address Translation: Page Fault
1) Processor sends virtual address to MMU
2-3) MMU Fetches Page Table Entry from page 
table in memory

4) Valid bit is zero; page fault 
exception!

5) Handler identifies victim (pages it 
out to disk)

6) Handler pages in new page and 
updates Page table entry in memory

7) Handler returns to original process, 
restarting from our ‘faulty’ instruction



Address Translation: Page Fault
1) Processor sends virtual address to MMU
2-3) MMU Fetches Page Table Entry from page 
table in memory

4) Valid bit is zero; page fault 
exception!

5) Handler identifies victim (pages it 
out to disk)

6) Handler pages in new page and 
updates Page table entry in memory

7) Handler returns to original process, 
restarting from our ‘faulty’ instruction

7) At this point, 
we will get a hit, 
and resume 
(See previous 
“Page Hit” 
slides)



Address Translation: Page Fault
1) Processor sends virtual address to MMU
2-3) MMU Fetches Page Table Entry from page 
table in memory

4) Valid bit is zero; page fault 
exception!

5) Handler identifies victim (pages it 
out to disk)

6) Handler pages in new page and 
updates Page table entry in memory

7) Handler returns to original process, 
restarting from our ‘faulty’ instruction

7) At this point, 
we will get a hit, 
and resume 
(See previous 
“Page Hit” 
slides)

How can we speed up the process?



Let’s speed up memory accesses

• Translation Lookaside Buffer (TLB)
• It is called a buffer, but really it is a cache.
• It’s a set-associative hardware cache in the Memory 

Management Unit (MMU).
• Contains complete page table entries for (some small amount) of 

pages.

• More simply defined: 
• The TLB - stores recent translations of virtual memory to physical 

addresses in a table
• (The Translation Lookaside Buffer is part of the MMU system)



Address Translation - Notation

• Basic Parameters
• N=2n: Number of addresses in virtual address space
• M=2m: Number of addresses in physical address space
• P=2p: Page size (bytes)

• Components of virtual address (VA)
• TLBI: TLB index
• TLBT: TLB tag
• VPO: Virtual page offset
• VPN: Virtual page number

• Components of physical address (PA)
• PPO: Physical page offset (same as VPO)
• PPN: Physical page number

Two new items 



Accessing the Translation Lookaside Buffer (TLB)

• This looks quite familiar to our set-associative cache!



Accessing the Translation Lookaside Buffer (TLB)

• This looks quite familiar to our set-associative cache!

Now we can 
look in this 
cache and 
quickly find 
valid page 
table entries. 



Translation Lookaside Buffer (TLB) Hit

• On a hit, we reduce by 1 memory access

• In practice, misses are rare
• We pay an extra memory access if so

Only one 
memory 
access with 
hits



Summary of Virtual Memory

• Programmers
• We see a process as owning a private linear address space 

[easy to program]
• Our address space cannot be corrupted by other processes 

[isolation]

• System view of virtual memory
• We use memory efficiently by caching our virtual memory pages

• Locality saves the day!
• Memory management and protection is significantly simplified
• Different configurations could exist, such that we have multiple 

levels of paging.
• (As always, there are trade-offs!)


