NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter
Desnoyers’ lecture slides for the same course.



x86 32-bit as an Example



x86 32-hit as an Example: Goal

* Translate 32-bit virtual address to 32-bit physical address
* A page is 4096 (4KB).



How Big is the Page Table?

32-bit VA
Virtual address
Page table = ] g
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)

(CR3 in x86)

20-bit VPO = 2220 = 1M 12-bit VPO = 2712 = 4KB

Page table
. Valid  Physical page number (PPN)

Physical page table
address for the current

process i
Valid bit = 0:
Page not in memory € Valid bit=1
(page fault)
20-bit PPN
m-1 v p p1 v 2

Physical page number (PPN) Physical page offset (PPO)

Physical address

32-bit PA




How Big is the Page Table?

32-bit VA
Virtual address
Page table = ] g
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)

(CR3 in x86)

20-bit VPO = 2220 = 1M 12-bit VPO = 2712 = 4KB

Page table
. Valid  Physical page number (PPN)

Physical page table
address for the current

process 4
Valid bit = 0:
Page not in memory € Valid bit = 1
(page fault) <
20-bit PPN
Page Table Size m-1 ¥ p p-1 ¥ 0
=G;j *
_ glfzeoo,t Iztfg(]) Number of Items Physical page number (PPN) Physical page offset (PPO)
=270 Physical address
=1TB
32-bit PA




Observations

* A large portion of the Virtual Address Space is not used. So not every
virtual page number (VPN) needs to be translated. (In the example
below: only 2372/4 = 593 pages are used)

1 GB =0x40000000
2 GB =0x80000000

ziming@ziming-ThinkPad:~/Dropbox/myTeaching/System Security - Attack and Defense for Binaries UB 2020/code/processmap$ pmap -X 21732

21732: ./pm

Address Perm Offset Device Inode Size Rss Pss leferenced Anonymous LazyFree ShmemPmdMapped Shared_Hugetlb Private_Hugetlb Swap SwapPss Locked Mapping
56569000 r-xp 00000000 103:02 28575310 4 - .~ = (¢} [} (¢} 0 pm
56562000 r--p 00000000 103:02 28575310 4 4 4 pm
5656b000 rw-p 00001000 103:02 28575310 B 2 -+ pm
57cf2000 rw-p 00000000 0O:00 0 N [heap]
f7d73000 r-xp 00000000 103:02 2883591 libc-2.
f7f48000 ---p 001d56000 103:02 2883591 libc-2.
f7f49000 r--p 001d5000 103:02 2883591 libc-2.
f7f4b000O rw-p 001d7000 103:02 2883591 libc-2.
f7f4c000 rw-p 0OOOEEEO 0O0:00 (¢}
f7f75000 rw-p 0OOOOEEO 0O:00 0
f7f77000 r--p 0OOEEEEO 0O0:00 (]
f7f7a000 r-xp 0OOEEEEO 0O0:00 [}
f7f7c000 r-xp 0OOOOOOO 102 2883587
f7fa2000 r--p 00025000 :02 2883587
f7fa3000 rw-p 00026000 :02 2883587
ffef3000 rw-p 00OOOOOO :00

H
(<]
(<]

~
~

(<}
NDDLDOOOOHLOONS D

[vvar]
[vdso]
1d-2.27.s0
1d-2.27.s0
1d-2.27.s0
[stack]

NDDLOOOOOLOOO AL DD
[cHcNoNoNoNoNoNoNoNoNoNoNoNoNol
[clcNcNoNoNoNoNoNoNoNoNoNoNoNol
[clcNcoNoNoNoNoNoNoNoNoNoNoNoNol
[cNcNcNoNoNoNoNoNoNoNoNoNoNoNoNol
[cNcNoNoNoNoNoNoNoNoNoNoNoNoNol
[cllcNoloNoNoNoNoNoNoNoNoNoNoNoNol

NDBDHDBOOO®®SO®
[I<NoNoNoNoNoNoNoNoNoNoNoNoNoNol

2372 988 988 KB
——



32-bit VA

Virtual address

How Big is the Page Table?

12-bit VPO = 212 = 4KB

So with this approach,
1,048,576 — 593 =
1,047,983 page table
entries would remain
invalid, yet still
occupy space.

Page table == ] g
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)
(CR3 in x86)
20-bit VPO = 2/20 =
1,048,576
Page table
. Valid  Physical page number (PPN)

Physical page table " 0

address for the current &l

process I

[0
0
Valid bit = 0:
Page not in memory € Valid bit = 1
(page fault)
20-bit PPN

Page Table Size m-1 ¥ p p-1 ¥ 0
=S;j *
- gg%i?[f*ltze/\rgo <N3u Lnyt::; 2f21/Etzegns Physical page number (PPN) Physical page offset (PPO)
=3MB Physical address

32-bit PA




Virtual address Physical Address

Ay . The solution

——>| Dir |Table|Offset | PPN |Offset |
| X X
N e B e A page table is stored in physical memory
> [ PPN _|Flags as a two-level tree.
; e The root of the tree is a 4096-byte page
20 1w T directory that contains 1024 PTE-like
hns 1 references to page table pages.
9 e Each page table page is an array of 1024
> PPN [Fiacs Page Table 32-bit PTEs.

t | e This two-level structure allows a page table
1 . .
0 to omit entire page table pages.
CR3 >
Page Directory I
31 1211109 8 7 6 5432 10
: A cw
Physical Page Number \If D|A oIT UwpP
Page table and page directory VC . &siiaeglte
entries are identical except for
the D bit g s e
' ——— WT - 1=Write-through, 0=Write-back
CD - Cache Disabled
A - Accessed
D - Dirty (0 in page directory)
AVL - Available for system use




xv6 definitions

// page directory index
#define PDX(va) (((uint)(va) >> PDXSHIFT) & OX3FF)

// page table index
#define PTX(va) (((uint)(va) >> PTXSHIFT) & OX3FF)

// construct virtual address from indexes and offset
#define PGADDR(d, t, o) ((uint)((d) << PDXSHIFT | (t) << PTXSHIFT | (0)))

// Page directory and page table constants.

#define NPDENTRIES 1024 // # directory entries per page directory
#define NPTENTRIES 1024 // # PTEs per page table

#define PGSIZE 4096 // bytes mapped by a page

#define PTXSHIFT 12 // offset of PTX in a linear address
#define PDXSHIFT 22 // offset of PDX in a linear address

#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

// Page table/directory entry flags.

#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Page Size

// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~OXFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & OXFFF)

https://github.com/mit-pdos/xv6-public/blob/master/mmu.h



Memory allocators



Dynamic Allocation of Pages

Virtual
Memory
* Page tables allow the OS to dynamically assign lﬂ»
physical frames to processes on-demand

. E(¥ if the stack grows, the OS can map in an
additional page




Dynamic Allocation of Pages

Virtual
Memory
* Page tables allow the OS to dynamically assign
physical frames to processes on-demand

. E(¥ if the stack grows, the OS can map in an
additional page




Dynamic Allocation of Pages

Virtual
Memory

* Page tables allow the OS to dynamically assign
physical frames to processes on-demand

. E(¥ if the stack grows, the OS can map in an lﬁ»
additional page

Stack

Stack
Stack




Dynamic Allocation of Pages

Virtual
Memory

* Page tables allow the OS to dynamically assign
physical frames to processes on-demand

. E(¥ if the stack grows, the OS can map in an lﬁ»
additional page

* On Linux, processes use sbrk()/brk()/mmap()
to request additional heap pages

 But these syscalls only allocates memory in
multiples of 4KB

Stack

Stack
Stack




Dynamic Allocation of Pages

Virtual
Memory

* Page tables allow the OS to dynamically assign
physical frames to processes on-demand

. E(¥ if the stack grows, the OS can map in an lﬁ»
additional page

* On Linux, processes use sbrk()/brk()/mmap()
to request additional heap pages T

 But these syscalls only allocates memory in
multiples of 4KB EZZ

Stack

Stack
Stack




What About malloc() and free()?

* The OS only allocates and frees memory in units of 4KB pages
* What if you want to allocate <4KB of memory?
* E.g. char * string = (char *) malloc(100);



What About malloc() and free()?

* The OS only allocates and frees memory in units of 4KB pages
* What if you want to allocate <4KB of memory?
* E.g. char * string = (char *) malloc(100);

* Each process manages its own heap memory

* On Linux, glibc implements malloc() and free(), manages objects on
the heap

* The JVM uses a garbage collector to manage the heap



What About malloc() and free()?

* The OS only allocates and frees memory in units of 4KB pages
* What if you want to allocate <4KB of memory?
* E.g. char * string = (char *) malloc(100);

* Each process manages its own heap memory

* On Linux, glibc implements malloc() and free(), manages objects on
the heap

* The JVM uses a garbage collector to manage the heap

* There are many different strategies for managing free memory



Free Space Management

* How do processes manage free memory?

1.  Explicit memory management

« Languages like C, C++; programmers control memory
allocation and deallocation

2. Implicit memory management

« Languages like Java, Javascript, Python; runtime takes care of
freeing useless objects from memory

* In both cases, software must keep track of the memory that is in
use or available



Why Should You Care?

* Regardless of language, all of our code uses dynamic memory

* However, there is a performance cost associated with using dynamic
memory

* Understanding how the heap is managed leads to:
* More performant applications

* The ability to diagnose difficult memory related errors and
performance bottlenecks



Setting the Stage

. Man?/ languages allow programmers to explicitly allocate and
deallocate memory

o C, C++
* malloc() and free()

* Programmers can malloc() any size of memory
* Not limited to 4KB pages

* free() takes a pointer, but not a size
* How does free() know how many bytes to deallocate?

* Pointers to allocated memory are returned to the programmer
* As opposed to Java or C# where pointers are “managed”
* Code may modify these pointers



Requirements and Goals

* Keep track of memory usage
* What bytes of the heap are currently allocated/unallocated?

* Store the size of each allocation
* So that free() will work with just a pointer

* Minimize fragmentation
* ... without doing compaction or relocation
* More on this later

* Maintain higher performance
* O(1) operations are obviously faster than O(n), etc.
* We won't cover this in class; you may refer to the textbook



Heap Fragmentation

obj * obj1, * obj2;

hash_tbl * ht; Heap Memory
int arrayf];

char * str1, * str2;

... // allocation of objects



Heap Fragmentation

obj * obj1, * obj2;
hash_tbl * ht; Heap Memory
int arrayf];
char * str1, * str2; strl
... // allocation of objects

array

free(obj2);
free(array); ht




Heap Fragmentation

obj * obj1, * obj2;
hash_tbl * ht; Heap Memory

int arrayf];
char * str1, * str2;

... // allocation of objects

free(obj2);
free(array);




Heap Fragmentation

obj * obj1, * obj2;
hash_tbl * ht; Heap Memory
int arrayf];

char * str1, * str2;

... // allocation of objects

free(obj2);
free(array);

str2 = (char *) malloc(300);

» This is an example of external fragmentation
» There is enough empty space for str2, but the space isn't usable

» As we will see, internal fragmentation may also be an issue




The Free List

* Afree list is a simple data structure for managing heap memory

* Three key components
1. [Alinked-listithat records free regions of memory
* Freeregions get split when memory is allocated
* Freelist is kept in sorted order by memory address

2. Each allocated block of memory has a header that records the
size of the block

3. An algorithm that selects which free region of memory to use
for each allocation request



The Free List

* Afree list is a simple data structure for managing heap memory

* Three key components

1. hat records free regions of memory
* Freg¢ mgions get split when memory is allocated
«  Freg kept in sorted order by memory address
2. Eachal k of memory has a header that records the

size of

* Design challenge: linked lists are dynamic data structures

 Dynamic data structures go on the heap
e But in this case, we are implementing the heap?!



Free List Data Structures

* The free list is a linked list
Heap Memory (4KB)

* Stored in heap memory, alongside other data

* For malloc(n):
num_bytes = n + sizeof(header)

typedef struct node_t { * Linked list of regions of
int size; free space
struct node_t * next; * size = bytes of free space
} node;

Header for each block
of allocated space
size = bytes of
allocated space next
node * head (sz) 4088

typedef struct header_t {
Int size;
} header;




Allocating Memory (Splitting)

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
Int size;

header; >
} node * head 4088




Allocating Memory (Splitting)

char * s1 = (char *) malloc(100);
Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
Int size;

header; >
} node * head 4088




Allocating Memory (Splitting)

char * s1 = (char *) malloc(100);
Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
Int size;

} header; Header char * s1 =




Allocating Memory (Splitting)

char * s1 = (char *) malloc(100); // 104 bytes
Heap Memory (4KB)

typedef struct node_t {

Int size;
struct node_t * next; Free region is “split”
} node; into allocated and free
regions
typedef struct header_t { node * head
Int size;
} header; Header char * s1 =




Allocating Memory (Splitting)

char * s1 = (char *) malloc(100);
char * s2 = (char *) malloc(100);

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;
} header;

Heap Memory (4KB)




Allocating Memory (Splitting)
char * s1 =(char *) malloc(100);

char * s2 = (char *) malloc(100); Heap Memory (4KB)

typedef struct node_t {

int size;

struct node_t * next; >
} node; node * head 3880 I
typedef struct header_t { char * s2 =

int size;
} header; char * s1 =




Allocating Memory (Splitting)
char * s1 = (char *) malloc(100);
char * s2 = (char *) malloc(100);
char * s3 =(char *) malloc(100);

Heap Memory (4KB)

typedef struct node_t {

int size;

struct node_t * next; >
} node; node * head 3880 I
typedef struct header_t { char * s2 =

int size;
} header; char * s1 =




Allocating Memory (Splitting)

char * s1 = (char *) malloc(100);
char * s2 = (char *) malloc(100);
char * s3 =(char *) malloc(100);

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;
} header;

Heap Memory (4KB)

(7]
node * head 3880

char * s3




Allocating Memory (Splitting)

char * s1 = (char *) malloc(100);
char * s2 = (char *) malloc(100);
char * s3 =(char *) malloc(100);

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;
} header;

Heap Memory (4KB)

(7]
node * head 3880

char * s3




Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

.............................................................................................................................. ()]
node * head 3880

typedef struct node_t {

int size; " >
struct node_t * next; char * s3
} node;

char * s2
typedef struct header_t {

int size;

} header; char * s1 =




Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

free(s2);

.............................................................................................................................. ()]
node * head 3880

typedef struct node_t {

int size; "
struct node_t * next; char * s3
} node;
char * s2

typedef struct header_t {
int size;

} header; char * s1 =




Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

free(s2);

.............................................................................................................................. ()]
node * head 3880

typedef struct node_t {
int size; % >
struct node_t * next; char * s3
} node;
char * 52 — >
typedef struct header_t { I —
Int size;
} header; char * s1 =




Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

free(s2); // returns 100 + 4 - 8 bytes

node * head
typedef struct node_t {

int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;

} header; char * s1 =




Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

free(s2); // returns 100 + 4 - 8 bytes

typedef struct node_t {
int size;
struct node_t * next;
} node;

char * s2
typedef struct header_t {
int size; node * head

} header; char * s1 =




Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

free(s2); // returns 100 + 4 - 8 bytes
free(s1); // returns 100 + 4 - 8 bytes

typedef struct node_t {
int size;
struct node_t * next;
} node;

char * s2
typedef struct header_t {

int size;
} header; char * sl
node * head




Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

free(s2); // returns 100 + 4 - 8 bytes
free(s1); // returns 100 + 4 - 8 bytes
free(s3); // returns 100 + 4 - 8 bytes

typedef struct node_t {
int size;

struct node_t * next; char * s3
} node;
char * s2
typedef struct header_t {
int size;
} header; char * s1

node * head



Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

free(s2); // returns 100 + 4 - 8 bytes
free(s1); // returns 100 + 4 - 8 bytes
free(s3); // returns 100 + 4 - 8 bytes

typedef struct node_t {

int size; ,
struct node_t * next; char * s3
} node;
These pointers are char * s2
typedef struct o : :
int size; dangling”: they still point
} header; to heap memory, but the char * s1

pointers are invalid node * head



Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation

free(s2); // returns 100 + 4 - 8 bytes
free(s1); // returns 100 + 4 - 8 bytes
free(s3); // returns 100 + 4 - 8 bytes

typedef struct node_t {

int size;

struct node_t * next;

} node;

typedef struct
int size;
} header;

These pointers are
“dangling”: they still point
to heap memory, but the

pointers are invalid

Heap Memory (4KB)

All memory is free, but
the free list divided into
four regions

node * head



Freeing Memory

« The free list is kept in sorted order
- free() is an O(n) operation Heap Memory (4KB)

All memory is free, but
free(s2); // returns 100 + 4 - 8 bytes the free list divided into
free(s1); // returns 100 + 4 - 8 bytes four regions
free(s3); // returns 100 + 4 - 8 bytes

typedef struct node_t {

int size; If user calls malloc(4000)
struct node_t * nexRV  ETRWIIS[s N E e oIt ¥
} node;
These pointers are
typedef struct i o : :
int size: dangling”: they still point

} header; to heap memory, but the
pointers are invalid node * head




Coalescing

Heap Memory (4KB)

* Free regions should be merged with their
neighbors

* Helps to minimize fragmentation
» This would be O(n?) if the list was not sorted

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;
} header;

node * head



Coalescing

| _ . Heap Memory (4KB)
* Free regions should be merged with their

neighbors
* Helps to minimize fragmentation
» This would be O(n?) if the list was not sorted

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;
} header;

node * head 2000



Coalescing

| _ . Heap Memory (4KB)
* Free regions should be merged with their

neighbors
* Helps to minimize fragmentation
» This would be O(n?) if the list was not sorted

3880
typedef struct node_t {
int size;
struct node_t * next; 96
} node;

typedef struct header_t {
int size;

 header; yﬁi
node * head




Coalescing

| _ . Heap Memory (4KB)
* Free regions should be merged with their

neighbors
* Helps to minimize fragmentation
» This would be O(n?) if the list was not sorted

3880
typedef struct node_t {

int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;
} header;

node * head 20



Coalescing

| _ . Heap Memory (4KB)
* Free regions should be merged with their

neighbors
* Helps to minimize fragmentation
» This would be O(n?) if the list was not sorted

typedef struct node_t {
int size;
struct node_t * next;
} node;

typedef struct header_t {
int size;

} header, - R
node * head =liss,




Choosing Free Regions (1)

Heap Memory (4KB)

int i[] = (int*) malloc(®);
// 8 + 4 =12 total bytes

* Which free region should be chosen?

node * head =



Choosing Free Regions (1)

Heap Memory (4KB)

intif] = (int*) malloc(®);

char * s2 =

* Which free region should be chosen?

* Fastest option is First-Fit
* Split the first free region with >=8

bytes available char * s1 =

node * head

inti[] =




Choosing Free Regions (1)

Heap Memory (4KB)

intif] = (int*) malloc(®);

char * s2 =

* Which free region should be chosen?

* Fastest option is First-Fit
* Split the first free region with >=8

bytes available char * s1 =
* Problem with First-Fit?

node * head

inti[] =




Choosing Free Regions (1)

Heap Memory (4KB)

intif] = (int*) malloc(®);

char * s2 =

* Which free region should be chosen?

* Fastest option is First-Fit
* Split the first free region with >=8

bytes available char * s1 =
* Problem with First-Fit?

* Leads to external fragmentation

node * head

inti[] =




Choosing Free Regions (2)

inti[] = (int*) malloc(®); Heap Memory (4KB)

char * s2 =

* Which free region should be chosen?

* Second option: Best-Fit

* Locate the free region with size
closest to (and >=) 8 bytes char * s1 =

* Less external fragmentation than First-fit

node * head ==



Choosing Free Regions (2)

intif] = (int*) malloc(®);

* Which free region should be chosen?

* Second option: Best-Fit

* Locate the free region with size
closest to (and >=) 8 bytes

Heap Memory (4KB)

char * s2 =

3596

inti[] =
char * s1 ==

* Less external fragmentation than First-fit

node * head ==

50

7]



Choosing Free Regions (2)

intif] = (int*) malloc(®);

* Which free region should be chosen?

* Second option: Best-Fit

* Locate the free region with size
closest to (and >=) 8 bytes

Heap Memory (4KB)

3596

* Less external fragmentation than First-fit

* Problem with Best-Fit?

node * head ==

50

7]



Choosing Free Regions (2)

intif] = (int*) malloc(®);

* Which free region should be chosen?

* Second option: Best-Fit

* Locate the free region with size
closest to (and >=) 8 bytes

Heap Memory (4KB)

3596

* Less external fragmentation than First-fit

* Problem with Best-Fit?
* Requires O(n) time

node * head ==

50

7]



Basic Free List Review
* Singly-linked free list

* List is kept in sorted order
* free() is an O(n) operation
* Adjacent free regions are coalesced

* Various strategies for selecting which free region to use
* First-fit: use the first free region with >=n bytes available
« Worst-case is O(n), but typically much faster
« Tends to lead to external fragmentation at the head of the list
* Best-fit: use the region with size closest (and >=) to n
* Less external fragments than first-fit, but O(n) time



Some clarification for the assignment

* You do not have to know about 4KB granularity allocation happening behind
the scene

* You may treat as if sbrk(X) newly allocates X bytes of memory block
* You do not have to split the memory block when reusing it for allocation
* You do not have to merge the memory block during freeing

cated block from sbrk call as a single

* You simply need to treat the all
locks as they are

memory block and reuse the b

oo



Concurrency



Concurrent thinking

* Humans tend to think sequentially

* Thinking about all the potential sequences of events is difficult for

humans.
* https://www.psychologicalscience.org/news/why-humans-are-bad-

at-multitasking.html
* Computers on the other hand, can multi-task quite well.

s 550 (IATION FOR
Ops ‘ PSYCHOLOGICAL SCIENCE

News Research Topics Conventions Journals Observer Magazin

JOIN/RENEW

From: LiveScience
Why Humans Are Bad at Multitasking

TAGS: COGNITIVE PROCESSES [ COGNITIVE PSYCHOLOGY | MULTITASKING

LiveScience:


https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html
https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html

Parallelism vs Concurrency (programming context)

* What are parallelism and concurrency?

* What is the difference?



Parallelism vs Concurrency (programming context)

* Concurrency:

Happening at at the same time, interleaving, sharing resources
* Multiple tasks in progress at the same time
* Dealing with multiple things at once

* Parallelism:

Happening at the same time, progressing independently
* Multiple tasks executing at the same time
* Doing multiple things at once
* Simultaneous execution



Parallelism vs Concurrency (programming context)

* Concurrency
* Two queues for one vending machine

bl =
e
* Parallelism
* Two queues for two vending machines
........ =

........ =




Parallelism vs Concurrency (programming context)

* Concurrent execution on a single-core system:

SR PL | P2 [P3 [Pa |P1 [P2 |P3 P4 [P ..
#

Time
* Parallel execution on a dual-core system:

Core 1l (P1 [P3 [P1 |P3 |P1 |P3 [PL [P3 |P1 |... |

O WAl P2 | P2 [P2 |Pa P2 P4 (P2 (P4 [P2 |...
————————————————-

Time




Parallel
Programs

Concurrent
Programs



Why is concurrency so important?



Moore’s law is slowing down

* The number of transistors on IC chips doubles approx. every 2 years

DRAM capacity Intel processor density

Megabits per DRAM

1000

m——_
1.E+07
/_// ~+~Transistor Density =@~Moore's Law (1975 Version)
1.E+06
P ~" 10X
/"/- /-/
1.E+05
/
/ e //
1.E+04
S
/ 1508 // Cost/transisto
psm—— r slowing
/ 1.6402 // down faster,
// due to fab
1.5x/year 1.4x/year 1.1x/year 16401 costs.
2x in <2 years 2x in 2 years 2x in 7 years
2908 2998 Y 2000 o 5 1:1. 2088 2020 l.sml;;l 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy.
https://p4.org/assets/P4AWS_2019/Speaker_Slides/9_2.05pm_John_Hennessey.pdf



End of Dennard scaling

* Processor frequency increased for free as transistors became smaller

* Transistors became so small that current leakage overheats the chip

Performance (vs. VAX-11/780)

Uniprocessor performance (single core)

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)
ntel Core i7 4 cores 4.0 GHz (Boost to 4. 2 GHz)
In!el Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)

100,000 Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz) R —
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz) 49,935
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) 49.870
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) 31,999 9419\, O W
Intel Core Duo Extreme 2 cores, 3.0 GHz 21,871
Intel Core 2 Extreme 2 cores, 2.9 GHz
o e i m i it e P s e e i e AMD Athlon 64, 2.8 GHz ———
10,000 AMD Athlon, 2.6 GHz <33
Intel Xeon EE 3.2 GHz o681 7.108
Intel D8SOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) 6,043 B
IBM Power4, 1.3 GHz @y=° 4195
Intel VC820 motherboard, 1.0 GHz Pentium Il processor g~ 016
Professional Workstation XP1000, 667 MHz 21264A g
oo ______Digital AlphaSever 8400 6/575. 575 MHz 21264 g —cSities IO | e
1000 a3
AlphaServer 4000 5/600, 600 MHz 21164_g .=~
Digital Alphastation 5/500, 500 MHz @~ 649
Digital Alphastation 5/300, 300 MHz ol
i ®-280 23%/year 12%/year 3.5%lyear|
Digital Alphastation 4/266, 266 MHz ~83
100 IBM POWERSstation 100, 150 MHz 117
b o e i s e i i A S M S O TORE D e B VT AT —————
Digital 3000 AXP/500, 150 MHz @ <&
HP 9000/750, 66 MHz g .-~
/=51
IBM RS6000/540, 30 MHz_.gf 54 52%/year
MIPS M2000, 25 MHz e
MIPS M/120, 16.7 MHz g=7
10 oo e —
Sun-4/260, 16.7 MHz -5
VAX 8700, 22 MHz g¢%
AX-11/780, 5 MHz
25%/year
1 T T T T T T T T T T T T T T T
1978 1980 1 982 1 984 1 986 1 988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy.
https://web.stanford.edu/~hennessy/Future%200f%20Computing.pdf



Implications of CPU Evolution

* Increasing transistor count/clock speed
* Greater number of tasks can be executed concurrently

* Clock speed increases have almost stopped in the past few years
* Instead, more transistors = more CPU cores
* More cores = increased opportunity for parallelism



Amdahl’s Law

» Speed up does not necessarily apply to the entire system

* Speed up indicates a relative performance improvement

e Originally spent time to improved time ratio
1

(1—-P)+P/S

* (1—P) =the part that was not enhanced

* P =the part that was enhanced

* S =speed up of the part that was enhanced

 Speed up =




Amdahl’s Law

» Speed up does not necessarily apply to the entire system

* Speed up indicates a relative performance improvement

e Originally spent time to improved time ratio
1

(1—-P)+P/S

* (1—P) =the part that was not enhanced

* P =the part that was enhanced

* S =speed up of the part that was enhanced

 Speed up =




Amdahl’s Law

» Speed up does not necessarily apply to the entire system

* Speed up indicates a relative performance improvement

e Originally spent time to improved time ratio
1

(1—-P)+P/S

* (1—P) =the part that was not enhanced

* P =the part that was enhanced

* S =speed up of the part that was enhanced

 Speed up =




Amdahl’'s Law

* Upper bound on performance gains from parallelism

* If | take a single-threaded task and parallelize it over N CPUs, how
much more quickly will my task complete?

* Definition:
* seq is the fraction of processing time that is processed sequentially
e par is the fraction of processing time that can be parallelized
e seq+par =1
e N is the number of CPU cores

Speedup = 1pa

T
seq+——




Speedup

Amdahl’s Law

30

25

20+

= (0% Serial

1 m=109% Serial

w259 Serial
»=50% Serial
== 1 00% Serial

10




Concurrency

* In general, concurrency (like parallelism) is used because it is
necessary for a system to function.

* It is also largely motivated by increased performance

* The potential for more tasks to happen at once can thus increases
performance (especially, if we have multiple cores on our machine)



Concurrency

* In general, concurrency (like parallelism) is used because it is
necessary for a system to function.

* It is also largely motivated by increased performance

* The potential for more tasks to happen at once can thus increases
performance (especially, if we have multiple cores on our machine)

Concurrency comes with some

caveats however (next slide!)



Bad Concurrency = Data Race

* When two (or more) processes contending for one shared resource.




Bad Concurrency = Data Race

* When two (or more) processes contending for one shared resource.

One parking
spot 2 cars
want to
acquire




Data race is not always as obvious...(1/4)

* Imagine you check your fridge and
find there is no milk

* So you run to the store




Data race is not always as obvious...(2/4)

* Imagine you check your fridge and
find there is no milk

* So you run to the store
* Then moments later your roommate
checks the fridge and finds it is empty
* So they run to the store




Data race is not always as obvious...(3/4)

* Imagine you check your fridge and
find there is no milk

* So you run to the store
* Then moments later your roommate
checks the fridge and finds it is empty
* So they run to the store

* Roommate # 3 comes and notices the
same



Data race is not always as obvious...(4/4)

* You get the idea when you then find
out you have 3 times as much milk as
your house needs when everyone
returns.




Bad Concurrency = Deadlock

* Grid lock in a traffic jam

* Each car prevents others from going
through a shared resource (the
intersection).

* (One car needs a piece of the
intersection in order to move
forward)



Bad Concurrency = Starvation

° Imagine a constant stream of green cars

* Progress is still being made by the green
cars

* The yellow cars can never make progress
to get across the street.
* They are resource starved of a shared
resource (again, they cannot cross the
intersection)




Concurrent Programming needs some extra care

* Races
* Qutcome depends on the arbitrary scheduling decisions
* e.g. Who gets the last seat on the airplane.
* Deadlock: Improper resource allocation prevents forward progress
* e.g. traffic gridlock
* Starvation/Fairness: External events and/or scheduling decisions can
prevent sub-task progress
* e.g. Someone jumping in front of you in line

* But regardless, concurrent programming is important and necessary to get
the most out of current processor architectures!



A Few Approaches to Concurrency

* Process-Based
* Fork() different processes
* Each process has its own private address space

* Event-Based

* Programmer manually interleaves multiple logical flows and polls
for events

* All flows share the same address space
* Uses technique called I/0 multiplexing

* Thread-based (Today’s focus)
* Kernel automatically interleaves multiple logical flows
* Each flow shares the same address space
* Hybrid of process-based and event-based.



Threads



Problems with Processes

* Process creation is heavyweight (i.e. slow)

* IJPC mechanisms are cumbersome



Problems with Processes

* Process creation is heavyweight (i.e. slow)
* Space must be allocated for the new process
* fork() copies all state of the parent to the child

* IJPC mechanisms are cumbersome



Problems with Processes

* Process creation is heavyweight (i.e. slow)
* Space must be allocated for the new process
* fork() copies all state of the parent to the child

* IPC mechanisms are cumbersome
* Difficult to use fine-grained synchronization

* Message passing is slow
« Each message may have to go through the kernel



Threads

* Light-weight processes that share the same memory and state

* Every process has at least one thread

* Benefits:
* Resource sharing, no need for IPC
* Economy: faster to create, faster to context switch
* Scalability: simple to take advantage of multi-core CPUs



Single-Threaded Process

Multi-Threaded Process

Process-Level Shared Data

Code

Data Descriptors

Process-Level Shared Data

Global

File
Descriptors

Thread 1

$

Thread 1

$

Thread 2

$

Thread 3




A Process can have Multiple Threads

* Each thread shares the same code, data, and kernel context
* A thread has its own thread id (TID)
* A thread has its own logical control flow (no need to exec)

* A thread has its own stack for local variables

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
‘ yoel

Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes
st 5P Kernel context
Pc ernel con .

= PG VM structures

Descriptor table
brk pointer




View of Threads

* Threads associated with a process form a “pool” of peers

* Unlike processes (on the right) which form a tree hierarchy
(i.e. parent/child relationship)

Threads associated with process foo Process hierarchy
R e~ s s S
| @ | (P0)
' @ !
] ? \
@ L 7
Q. o (1
\ “a | shared code, data :
: and kernel context |
7 ¥ I
o N OIOXO),
1 3 !
 ® ®
| ]
. | (0

______________________



Remember this diagram on Concurrent Processes?

* We looked at multiple processes running on a single core (next slide
for multiple cores)

On a single core, which processes here are concurrent relative to each other?
o - A&B, A&C
> Which are sequential?

- Process A Process B Process C
m Sequential: B &C

Time |

I
|




Concurrent Thread (or Process) Execution

* Single Core Process * Multi-Core Processor

* Simulate parallelism * Can have true parallelism
by time slicing

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores



Threads vs Processes

* Similarities
* Each has its own logical control flow

* Each can run concurrently with others
(possibly on different cores if available)

* Each is context switched

* Differences

* Threads share all code and data (except local stacks)
* Processes (typically) do not (i.e. fork makes a copy)
* Threads are usually less expensive than managing processes
* Process control is twice as expensive as thread control
« Linux estimates
. ~20k cycles to create and reap a process
- ~10k cycles to create and reap a thread



Pthreads
(POSIX Threads)



POSIX Pthreads

* POSIX
* Portable Operating System Interface

* POSIX standard API for thread creation
 JEEE 1003.1c

* Specification, not implementation
 Defines the API and the expected behavior
* ... but not how it should be implemented

* Implementation is system dependent
* On some platforms, user-level threads
* On others, maps to kernel-level threads



Posix Threads API (PThreads Interface)

- Sample functions

Creating and reaping threads

« pthread_create()

« pthread_join()

Determining thread ID

s« pthread_self()

Terminating threads

« pthread_cancel()

s« pthread_exit()
exit() - Terminates all threads
return -terminates current thread

Synchronizing access to shared variables

s« pthread_mutex_init (mutual exclusion lock)
pthread_mutex_lock and pthread_mutex_unlock



Pthread examples



Hello Thread

* The thread that is “launched” is a %
function in the program .
* This is done when the thread ¢ #incuee
is created ;
* Different attributes can be it e L y
sent to threads (in this case 2~ rewr
the first NULL) s —
* Arguments can also be i o
passed tO the funCtion ig pthread:create(&tid, , thread,
(second NULL) 2 pvesd seinCia, )

23 return ©;
24 }



Hello Thread

* The thread that is “launched” is a %
function in the program .
* This is done when the thread ¢ #incuee
is created ;
* Different attributes can be it e L y
sent to threads (in this case 2~ rewr
the first NULL) s —
* Arguments can also be i o
passed tO the funCtion ig pthread:create(&tid, , thread,
(second NULL) 2 pvesd seinCia, )

23 return ©;
24 }



Hello Thread

* The thread that is “launched” is a

function in the program %
* This is done when the thread ¢/ =
is created S

e Different attributes can be ;

sent to threads (in this case 10 void *thread(void *vargp){

. 11 printf(
the first NULL) £, T
* Arguments can also be I
passed to the function 1 ki ol
(Second NULL) ig pthread_create(&tid,
20
* pthread_join is the equivalent 2 Pthread Jon(tid,

to “wait” for threads St et

JF

, thread,



Hello Thread

* The thread that is “launched” is a

function in the program
* This is done when the thread
is created
e Different attributes can be
sent to threads (in this case 16 vold;ehread (vold:Svarep){

#include
#include
#include

WCoOoNOWV B WNE

11 printf( );

the first NULL) £, T

* Arguments can also be I

passed to the function - i

(Second NULL) ig pthread create(&tid, , thread,
20

* pthread_join is the equivalent 2 o
to “wait” for threads I

* What if we don't call join?



Visual execution of “Hello Thread”

Main thread

call Pthread create()
Pthread create()

returns
call Pthread join()

Main thread waits for
peer thread to terminate

Pthread__join ()
returns
exit ()
Terminates
main thread and
any peer threads

.......
.......

printf ()

return NULL;
Peer thread
terminates



Launching multiple threads

1

2

3

4

5 #include

H 6 #include

8

9 #define NTHREADS
10
11 : 1 variable arg
12 void *thread(void *vargp){
13 printf( , pthread_self());
14 return H
15 }
16
17 int maip({
18 C our
19 pthread t tids[NTHREADS];
20 printf( ,pthread_self());
21 “_reate and execute tiple thre:
22 for(int i=9; i < NTHREADS; ++i){
23 pthread_create(&tids[i], , thread, );
24 }
25 lake mai it for each ~ead
26 for(int i=0; i < NTHREADS; ++i){
27 pthread_join(tids[i], );
28 }
29
30 printf( ,pthread_self());
31 1o
32 return ©;

33}



Launching multiple threads

* Store 10 thread ids.
* Launch 10 threads

1

2

3

4

5 #include

6 #include

7 #include

8

9 #define NTHREADS

10

12 void *thread(void *vargp){

13 printf( , pthread_self());
14 return H

15 }

16
17 int main(){
18
19 pthread_t tids[NTHREADS];
20 printf( ,pthread_self());
21 S : ¥ .
22 for(int i=9; i < NTHREADS; ++i){
23 pthread_create(&tids[i], , thread, );
24 }
25 : : i
26 for(int i=0; i < NTHREADS; ++i){
27 pthread_join(tids[i], );
28 }
29
30 printf( ,pthread_self());
31
32 return ©;



Launching multiple threads

* Store 10 thread ids.
* Launch 10 threads

* Print out their thread ids to show
which thread is executing.

CONOWV B WN

#include
#include
#include

9 #define NTHREADS

12 void *thread(void *vargp){

15 }

printf( ,/ pthread_self());
return ¥

17 int main(){

pthread_t tids[NTHREADS];
printf( ,pthread_self());

for(int i=0; i < NTHREADS; ++i){
pthread_create(&tids[i], , thread, );

¥

for(int i=0; i < NTHREADS; ++i){
pthread_join(tids[i], );

1

J

printf( ,pthread_self());

return ;



Launching multiple threads

#include
#include
#include

NV B WN

* Store 10 thread ids.

* Launch 10 threads 10

12 void *thread(void *vargp){

* Print out their thread ids to show = i ) prinesd Oy
which thread is executing. oo
18
* Join all of our threads with the . i =t s R
main th read i for(int i=0; i < NTHREADS; ++i){

* (i.e. make the main thread wait = """ omE T
until all 10 threads have 2 ot e MR O s
executed.) 28 )

32 printf( ,pthread_self());

32 return ©;



* *New Program*

Launching multiple threads

[
DLW o0 ~NOU S WN B

=
N

13

// Compile with:

//

// clang -lpthread thread3.c -o thread3

/%

int counter = 0;

// Thread with variable arguments

void *thread(void *vargp){
counter = counter +1;
return NULL;

}

int main(){
// Store our Pthread ID

pthread t tlds[NTHREADS],
printf("“Counte : ,counter);
// Create and txecufe nultlple threads

for(int i=0; i < NTHREADS; ++i){
pthread create(&tids[i], NULL, thread,
}
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){
pthread join(tids[i], NULL);
}
printf (" ,counter);
// end program
return 0;

NULL);



Launching multiple threads

* *New Program*

* This time launch 10000 threads

LCoo~NOULE WN =

// Compile with:

//

// clang -lpthread thread3.c -o thread3
/%

int counter = 0;

// Thread with variable arguments

void *thread(void *vargp){

counter = counter +1;
return NULL;

}

int main(){

// Store our Pthread ID

pthread t tids[NTHREADS];

printf( ynt .counter):
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){

pthread create(&tids[i], NULL, thread,
}
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){
pthread join(tids[i], N s
}
printf( ( ,counter);
// end program
return 0;



Launching multiple threads

* This time launch 10000 threads

* counter is shared between
threads

* What is wrong with this program?

// Compile with:

-lpthread thread3.c -o thread3

int counter =

// Thread with variable arguments
void *thread(void *vargp){

counter = counter +1;
return

int main(){

// Store our Pthread ID
pthread _t tids[NTHREADS];
printf( t ,counter);
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){
pthread create(&tids[i], , thread,
}
// Create and execute multiple threads

for(int i=0; i < NTHREADS; ++i){

pthread_join(tids[i], N )5
}
printf( ,counter);
// end program
return



Launching multiple threads

This time launch 10000 threads

counter is shared between
threads

What is wrong with this program?
What is the final output?

// Compile with:

-lpthread thread3.c -o thread3

int counter =

// Thread with variable arguments
void *thread(void *vargp){

counter = counter +1;
return

int main(){

// Store our Pthread ID
pthread _t tids[NTHREADS];
printf( t ,counter);
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){
pthread create(&tids[i], , thread,
}
// Create and execute multiple threads

for(int i=0; i < NTHREADS; ++i){

pthread_join(tids[i], N )5
}
printf( ,counter);
// end program
return



Launching multiple threads

This time launch 10000 threads

counter is shared between
threads

What is wrong with this program?

What is the final output?

Counter starts at: @
Final Counter value: 9998
-bash-4.2% ./thread3
Counter starts at: @
Final Counter value: 9998
-bash-4.2% ./thread3
Counter starts at: ©
Final Counter value: 9997
-bash-4.2% ./thread3
Counter starts at: @
Final Counter value: 9999
-bash-4.2% ./thread3
Counter starts at: @
Final Counter value: 9997

OLoo~NOOULTE WN =

// Compile with:
//
// clang -1lpthread thread3.c -o thread3

/1

int counter = 0;

// Thread with variable arguments

void *thread(void *vargp){
counter = counter +1;
return NULL;

}

int main(){
// Store our Pthread ID
pthread _t tids[NTHREADS];
printf("Counte arts a ,counter);
// Create and execute multiple threads

for(int i=0; i < NTHREADS; ++i){
pthread create(&tids[i], NULL, thread,
}
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){
pthread_join(tids[i], NULL);
}
printf("Final Cou value: ,counter);
// end program
return 0;



What was happening?

Thread 1 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”; 11

Thread 2 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”; 11




What was happening?

Thread 1 (counter = counter + 1)
Read “counter™”: 11

Add 1 to “counter”: 12
Write to “counter”: 12

Thread 3 (counter = counter + 1)
Read “counter”: 12

Add 1 to “counter™”: 13

Write to “counter”: 13

Thread 2 (counter = counter + 1)
Read “counter”: 11
Add 1 to “counter”: 12

Write to “counter”; 12




Synchronization of Threads

* Shared variables are thus handy for moving around data

* If we do not share properly, we can have synchronization errors!
* There is a solution however!
* (recap below)

Counter starts at: @
Final Counter value: 9998
-bash-4.2% ./thread3
Counter starts at: ©
Final Counter value: 9998
-bash-4.2% ./thread3
Counter starts at: ©
Final Counter value: 9997
-bash-4.2% ./thread3
Counter starts at: @
Final Counter value: 9999
-bash-4.2% ./thread3
Counter starts at: @
Final Counter value: 9997




Locks

* If multiple entities tries to acquire the lock, only one will succeed
* Lock cannot be shared

* If someone is holding the lock others have to wait until the lock holder
unlocks
X
® [ ®
A A 1 A
* Lock can project shared variables or code regions that should not be
executed concurrently




Example with lock

* Included a pthread_mutex_lock

O OVoO~NOUTE WN -

// Compile with:
// clang -lpthread thread4.c -o thread4
// This program fixes a problem with thread3.c

int _caounter = (-

pthread mutex t mutexl = PTHREAD MUTEX INITIALIZER;

// Thread with variable arguments
void *thread(void *vargp){
pthread mutex lock(&mutexl);
counter = counter +1;
pthread _mutex_unlock(&mutexl);
return NULL;

}

int main(){
// Store our Pthread ID
pthread_t tlds[NTHREADS],
printf ("« ter starts at: ",counter);
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){

pthread create(&tids[i], NULL, thread,

}

// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){

pthread join(tids[i], NULL);
printf("Final Counter value: ",counter);
// end program
return 0;

NULL);



Example with lock

* Included a pthread_mutex_lock

* lock and unlock protects

* Locks in other words enforce, that
we have exclusive access to a

region of code.

// Compile with:
// Lang -1lpthread thread4.c -o thread4
// This program fixes a problem with thread3.c

int counter = 0;
pthread mutex t mutexl = PTHREAD MUTEX INITIALIZER;

// Thread with variable arguments
void *thread(void *vargp){

pthread mutex Llock(&mutexl);
counter = counter +.;
pthread mutex unlock(&mutexl);
return
}
int main(){

// Store our Pthread ID

pthread_t tids[NTHREADS];

printf( ,counter);
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){

pthread create(&tids[i], _, thread,
}
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){

pthread join(tids[i], )3
printf( ,counter);
// end program
return



What was happening?

Thread 1 (counter = counter + 1)
pthread_mutex_lock
Read “counter”: 10

Add 1 to “counter”; 11

Write to “counter”: 11
pthread_mutex_unlock

Thread 2 (counter = counter + 1)

pthread_mutex_lock

// Now acquires the lock and runs
Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11
pthred_mutex_unlock

-
>
m
@)
c
-
o
P




Example with lock

* Included a pthread_mutex_lock
* lock and unlock protect

* Locks in other words enforce, that we
have exclusive access to a region of
code.

mike:8$ gcc thread4.c -o thread4 -1lpthread
mike:8% ./thread4

Counter starts at: 0

Final Counter value: 10000
mike:8% ./thread4

Counter starts at: 0

Final Counter value: 10000
mike:8% ./thread4

Counter starts at: 0

Final Counter value:| 10000
mike:8% ./thread4

Counter starts at: 0

~“[[AFinal Counter value| 10000

Lo~NOOULE WN =

// Compile with:

// clang -1lpthread thread4.c -o thread4

// This program fixes a problem with thread3.c

int counter = 0;

pthread mutex t mutexl = PTHREAD MUTEX INITIALIZER;

// Thread with variable arguments

void *thread(void *vargp){

pthread mutex lock(&mutexl);
counter = counter +1;
pthread mutex unlock(&mutexl);
return NULL;
}
int main(){

// Store our Pthread ID
pthread t tids[NTHREADS];
printf("Counter st Lz ,counter);
// Create and execute multiple threads
for(int i=0; i < NTHREADS; ++i){
pthread create(&tids[i], NULL, thread,
}
// Create and execute multiple threads
for(int i=0; 1 < NTHREADS; ++i){
pthread_join(tids[i], NULL);
printf("Fi I z ,counter);
// end program
return 0;
}



Posix Threads API (PThreads Interface)

- Sample functions

Creating and reaping threads

» pthread_create()

s« pthread_join()

Determining thread ID

s« pthread_self()

Terminating threads

« pthread_cancel()

» pthread_exit()
exit() - Terminates all threads
return -terminates current thread

Synchronizing access to shared variables

s« pthread_mutex_init
pthread_mutex_lock and pthread_mutex_unlock



