
NEU CS 3650 Computer Systems

Instructor: Dr. Ziming Zhao

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Alden Jackson, Ben Weintraub, Gene Cooperman, Peter
Desnoyers’ lecture slides for the same course.

x86 32-bit as an Example

x86 32-bit as an Example: Goal

• Translate 32-bit virtual address to 32-bit physical address

• A page is 4096 (4KB).

How Big is the Page Table?

32-bit VA

12-bit VPO = 2^12 = 4KB20-bit VPO = 2^20 = 1M

32-bit PA

20-bit PPN

How Big is the Page Table?

32-bit VA

12-bit VPO = 2^12 = 4KB20-bit VPO = 2^20 = 1M

32-bit PA

20-bit PPN

Page Table Size
= Size of Item * Number of Items
= 2^20 * 2^20
= 2^40
= 1TB

Observations

• A large portion of the Virtual Address Space is not used. So not every
virtual page number (VPN) needs to be translated. (In the example
below: only 2372/4 = 593 pages are used)

1 GB = 0x40000000

2 GB = 0x80000000

3 GB = 0xC0000000

How Big is the Page Table?

32-bit VA

12-bit VPO = 2^12 = 4KB20-bit VPO = 2^20 =
1,048,576

32-bit PA

20-bit PPN

Page Table Size
= Size of Item * Number of Items
= 20 bit * 2^20 < 3 bytes * 2^20
= 3MB

0

0
0

So with this approach,
1,048,576 − 593 =
1,047,983 page table
entries would remain
invalid, yet still
occupy space.

The solution

● A page table is stored in physical memory
as a two-level tree.

● The root of the tree is a 4096-byte page
directory that contains 1024 PTE-like
references to page table pages.

● Each page table page is an array of 1024
32-bit PTEs.

● This two-level structure allows a page table
to omit entire page table pages.

xv6 definitions

https://github.com/mit-pdos/xv6-public/blob/master/mmu.h

Memory allocators

Dynamic Allocation of Pages

• Page tables allow the OS to dynamically assign
physical frames to processes on-demand

• E.g., if the stack grows, the OS can map in an
additional page

Virtual
Memory

Code

Stack

Heap

ESP

Dynamic Allocation of Pages

• Page tables allow the OS to dynamically assign
physical frames to processes on-demand

• E.g., if the stack grows, the OS can map in an
additional page

Virtual
Memory

Code

Stack

Heap

ESP Stack

Dynamic Allocation of Pages

• Page tables allow the OS to dynamically assign
physical frames to processes on-demand

• E.g., if the stack grows, the OS can map in an
additional page

Virtual
Memory

Code

Stack

Heap

ESP
Stack
Stack

Dynamic Allocation of Pages

• Page tables allow the OS to dynamically assign
physical frames to processes on-demand

• E.g., if the stack grows, the OS can map in an
additional page

• On Linux, processes use sbrk()/brk()/mmap()
to request additional heap pages

• But these syscalls only allocates memory in
multiples of 4KB

• Why 4KB?

Virtual
Memory

Code

Stack

Heap

ESP
Stack
Stack

Dynamic Allocation of Pages

• Page tables allow the OS to dynamically assign
physical frames to processes on-demand

• E.g., if the stack grows, the OS can map in an
additional page

• On Linux, processes use sbrk()/brk()/mmap()
to request additional heap pages

• But these syscalls only allocates memory in
multiples of 4KB

• Why 4KB?

Virtual
Memory

Code

Stack

Heap

ESP
Stack
Stack

Heap
Heap

What About malloc() and free()?

• The OS only allocates and frees memory in units of 4KB pages
• What if you want to allocate <4KB of memory?
• E.g. char * string = (char *) malloc(100);

What About malloc() and free()?

• The OS only allocates and frees memory in units of 4KB pages
• What if you want to allocate <4KB of memory?
• E.g. char * string = (char *) malloc(100);

• Each process manages its own heap memory
• On Linux, glibc implements malloc() and free(), manages objects on

the heap
• The JVM uses a garbage collector to manage the heap

What About malloc() and free()?

• The OS only allocates and frees memory in units of 4KB pages
• What if you want to allocate <4KB of memory?
• E.g. char * string = (char *) malloc(100);

• Each process manages its own heap memory
• On Linux, glibc implements malloc() and free(), manages objects on

the heap
• The JVM uses a garbage collector to manage the heap

• There are many different strategies for managing free memory

Free Space Management

• How do processes manage free memory?
1. Explicit memory management

• Languages like C, C++; programmers control memory
allocation and deallocation

2. Implicit memory management
• Languages like Java, Javascript, Python; runtime takes care of

freeing useless objects from memory

• In both cases, software must keep track of the memory that is in
use or available

Why Should You Care?

• Regardless of language, all of our code uses dynamic memory

• However, there is a performance cost associated with using dynamic
memory

• Understanding how the heap is managed leads to:
• More performant applications
• The ability to diagnose difficult memory related errors and

performance bottlenecks

Setting the Stage

• Many languages allow programmers to explicitly allocate and
deallocate memory

• C, C++
• malloc() and free()

• Programmers can malloc() any size of memory
• Not limited to 4KB pages

• free() takes a pointer, but not a size
• How does free() know how many bytes to deallocate?

• Pointers to allocated memory are returned to the programmer
• As opposed to Java or C# where pointers are “managed”
• Code may modify these pointers

Requirements and Goals

• Keep track of memory usage
• What bytes of the heap are currently allocated/unallocated?

• Store the size of each allocation
• So that free() will work with just a pointer

• Minimize fragmentation
• … without doing compaction or relocation
• More on this later

• Maintain higher performance
• O(1) operations are obviously faster than O(n), etc.
• We won’t cover this in class; you may refer to the textbook

Heap Fragmentation

obj * obj1, * obj2;

hash_tbl * ht;

int array[];

char * str1, * str2;

… // allocation of objects

Heap Memory

Heap Fragmentation

obj * obj1, * obj2;

hash_tbl * ht;

int array[];

char * str1, * str2;

… // allocation of objects

…
free(obj2);

free(array);

Heap Memory

str1

obj1

ht

array

obj2

Heap Fragmentation

obj * obj1, * obj2;

hash_tbl * ht;

int array[];

char * str1, * str2;

… // allocation of objects

…
free(obj2);

free(array);

Heap Memory

str1

obj1

ht

Heap Fragmentation

obj * obj1, * obj2;

hash_tbl * ht;

int array[];

char * str1, * str2;

… // allocation of objects

…
free(obj2);

free(array);

…
str2 = (char *) malloc(300);

• This is an example of external fragmentation
• There is enough empty space for str2, but the space isn’t usable

• As we will see, internal fragmentation may also be an issue

Heap Memory

str1

obj1

ht

str2

• A free list is a simple data structure for managing heap memory

• Three key components
1. A linked-list that records free regions of memory

• Free regions get split when memory is allocated
• Free list is kept in sorted order by memory address

2. Each allocated block of memory has a header that records the
size of the block

3. An algorithm that selects which free region of memory to use
for each allocation request

The Free List

• A free list is a simple data structure for managing heap memory

• Three key components
1. A linked-list that records free regions of memory

• Free regions get split when memory is allocated
• Free list is kept in sorted order by memory address

2. Each allocated block of memory has a header that records the
size of the block

3. An algorithm that selects which free region of memory to use
for each allocation request

The Free List

• Design challenge: linked lists are dynamic data structures
• Dynamic data structures go on the heap
• But in this case, we are implementing the heap?!

Free List Data Structures
• The free list is a linked list

• Stored in heap memory, alongside other data

• For malloc(n):
num_bytes = n + sizeof(header)

Heap Memory (4KB)

node * head
next

(sz) 4088
∅

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

• Linked list of regions of
free space

• size = bytes of free space

• Header for each block
of allocated space

• size = bytes of
allocated space

Allocating Memory (Splitting)

Heap Memory (4KB)

node * head
next

 4088
∅

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

Allocating Memory (Splitting)
char * s1 = (char *) malloc(100); // 104 bytes

Heap Memory (4KB)

node * head
next

 4088
∅

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

Allocating Memory (Splitting)
char * s1 = (char *) malloc(100); // 104 bytes

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1
Header

Allocating Memory (Splitting)
char * s1 = (char *) malloc(100); // 104 bytes

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3984

∅
node * head

Header

Free region is “split”
into allocated and free

regions

Allocating Memory (Splitting)
char * s1 = (char *) malloc(100); // 104 bytes

char * s2 = (char *) malloc(100); // 104 bytes
Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3984

∅
node * head

char * s1 = (char *) malloc(100); // 104 bytes

char * s2 = (char *) malloc(100); // 104 bytes

Allocating Memory (Splitting)

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅node * head

100
char * s2

char * s1 = (char *) malloc(100); // 104 bytes

char * s2 = (char *) malloc(100); // 104 bytes

char * s3 = (char *) malloc(100); // 104 bytes

Allocating Memory (Splitting)

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅node * head

100
char * s2

char * s1 = (char *) malloc(100); // 104 bytes

char * s2 = (char *) malloc(100); // 104 bytes

char * s3 = (char *) malloc(100); // 104 bytes

Allocating Memory (Splitting)

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅
node * head

100
char * s2

100
char * s3

char * s1 = (char *) malloc(100); // 104 bytes

char * s2 = (char *) malloc(100); // 104 bytes

char * s3 = (char *) malloc(100); // 104 bytes

Allocating Memory (Splitting)

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅
node * head

100
char * s2

100
char * s3

• The free list is kept in sorted order

– free() is an O(n) operation

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅
node * head

100
char * s2

100
char * s3

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅
node * head

100
char * s2

100
char * s3

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅
node * head

char * s2

100
char * s3

next
96

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅
node * head

char * s2

100
char * s3

next
96

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;
100

char * s1

next
3880

∅

node * head

char * s2

100
char * s3

next
96

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

free(s1); // returns 100 + 4 - 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header; char * s1

next
3880

∅

node * head

char * s2

100
char * s3

next
96

next
96

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

free(s1); // returns 100 + 4 - 8 bytes

free(s3); // returns 100 + 4 - 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header; char * s1

next
3880

∅

node * head

char * s2

char * s3

next
96

next
96

next
96

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

free(s1); // returns 100 + 4 - 8 bytes

free(s3); // returns 100 + 4 - 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header; char * s1

next
3880

∅

node * head

char * s2

char * s3

next
96

next
96

next
96

These pointers are
“dangling”: they still point
to heap memory, but the

pointers are invalid

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

free(s1); // returns 100 + 4 - 8 bytes

free(s3); // returns 100 + 4 - 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header; char * s1

next
3880

∅

node * head

char * s2

char * s3

next
96

next
96

next
96

These pointers are
“dangling”: they still point
to heap memory, but the

pointers are invalid

All memory is free, but
the free list divided into

four regions

• The free list is kept in sorted order

– free() is an O(n) operation

free(s2); // returns 100 + 4 – 8 bytes

free(s1); // returns 100 + 4 - 8 bytes

free(s3); // returns 100 + 4 - 8 bytes

Freeing Memory

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header; char * s1

next
3880

∅

node * head

char * s2

char * s3

next
96

next
96

next
96

These pointers are
“dangling”: they still point
to heap memory, but the

pointers are invalid

All memory is free, but
the free list divided into

four regions

If user calls malloc(4000)
what would happen?

• Free regions should be merged with their
neighbors

• Helps to minimize fragmentation
• This would be O(n2) if the list was not sorted

Coalescing

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

next
3880

∅

node * head

next
96

next
96

next
96

• Free regions should be merged with their
neighbors

• Helps to minimize fragmentation
• This would be O(n2) if the list was not sorted

Coalescing

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

next
3880

∅

node * head

next
200

next
96

• Free regions should be merged with their
neighbors

• Helps to minimize fragmentation
• This would be O(n2) if the list was not sorted

Coalescing

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

next
3880

∅

node * head

next
96

next
96

• Free regions should be merged with their
neighbors

• Helps to minimize fragmentation
• This would be O(n2) if the list was not sorted

Coalescing

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header;

next
3880

∅

node * head

next
304

• Free regions should be merged with their
neighbors

• Helps to minimize fragmentation
• This would be O(n2) if the list was not sorted

Coalescing

Heap Memory (4KB)

typedef struct node_t {
int size;
struct node_t * next;

} node;

typedef struct header_t {
int size;

} header; ∅
node * head

next
4088

Choosing Free Regions (1)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

node * head

Choosing Free Regions (1)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Fastest option is First-Fit
• Split the first free region with >=8

bytes available

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

int i[]

next
38node * head

Choosing Free Regions (1)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Fastest option is First-Fit
• Split the first free region with >=8

bytes available

• Problem with First-Fit?
•

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

int i[]

next
38node * head

Choosing Free Regions (1)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Fastest option is First-Fit
• Split the first free region with >=8

bytes available

• Problem with First-Fit?
• Leads to external fragmentation

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

int i[]

next
38node * head

Choosing Free Regions (2)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Second option: Best-Fit
• Locate the free region with size

closest to (and >=) 8 bytes

• Less external fragmentation than First-fit

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

node * head

Choosing Free Regions (2)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Second option: Best-Fit
• Locate the free region with size

closest to (and >=) 8 bytes

• Less external fragmentation than First-fit

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

node * head

next
4

int i[]

Choosing Free Regions (2)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Second option: Best-Fit
• Locate the free region with size

closest to (and >=) 8 bytes

• Less external fragmentation than First-fit

• Problem with Best-Fit?

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

node * head

next
4

int i[]

Choosing Free Regions (2)

int i[] = (int*) malloc(8);

// 8 + 4 = 12 total bytes

• Which free region should be chosen?

• Second option: Best-Fit
• Locate the free region with size

closest to (and >=) 8 bytes

• Less external fragmentation than First-fit

• Problem with Best-Fit?
• Requires O(n) time

Heap Memory (4KB)

char * s1

char * s2

next
3596

∅

next
50

next
16

node * head

next
4

int i[]

Basic Free List Review

• Singly-linked free list

• List is kept in sorted order
• free() is an O(n) operation
• Adjacent free regions are coalesced

• Various strategies for selecting which free region to use
• First-fit: use the first free region with >=n bytes available

• Worst-case is O(n), but typically much faster
• Tends to lead to external fragmentation at the head of the list

• Best-fit: use the region with size closest (and >=) to n
• Less external fragments than first-fit, but O(n) time

Some clarification for the assignment

• You do not have to know about 4KB granularity allocation happening behind
the scene

• You may treat as if sbrk(X) newly allocates X bytes of memory block

• You do not have to split the memory block when reusing it for allocation

• You do not have to merge the memory block during freeing

• You simply need to treat the allocated block from sbrk call as a single
memory block and reuse the blocks as they are

Concurrency

Concurrent thinking

• Humans tend to think sequentially

• Thinking about all the potential sequences of events is difficult for
humans.

• https://www.psychologicalscience.org/news/why-humans-are-bad-
at-multitasking.html

• Computers on the other hand, can multi-task quite well.

https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html
https://www.psychologicalscience.org/news/why-humans-are-bad-at-multitasking.html

Parallelism vs Concurrency (programming context)

• What are parallelism and concurrency?

• What is the difference?

Parallelism vs Concurrency (programming context)

• Concurrency:

Happening at at the same time, interleaving, sharing resources
• Multiple tasks in progress at the same time
• Dealing with multiple things at once

• Parallelism:

Happening at the same time, progressing independently
• Multiple tasks executing at the same time
• Doing multiple things at once
• Simultaneous execution

Parallelism vs Concurrency (programming context)

• Concurrency
• Two queues for one vending machine

• Parallelism
• Two queues for two vending machines

Parallelism vs Concurrency (programming context)

• Concurrent execution on a single-core system:

• Parallel execution on a dual-core system:

Core 1 P1 P2 P3 P4 P1 P2 P3 P4 P1 …

Time

Core 2 P2 P4 P2 P4 P2 P4 P2 P4 P2 …

Time

Core 1 P1 P3 P1 P3 P1 P3 P1 P3 P1 …

Concurrent
Programs

Parallel
Programs

Why is concurrency so important?

Moore’s law is slowing down

• The number of transistors on IC chips doubles approx. every 2 years

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy.
https://p4.org/assets/P4WS_2019/Speaker_Slides/9_2.05pm_John_Hennessey.pdf

DRAM capacity Intel processor density

End of Dennard scaling

• Processor frequency increased for free as transistors became smaller

• Transistors became so small that current leakage overheats the chip

Source:The end of moore’s law & faster general purpose computing, and a road forward, John Hennessy.
https://web.stanford.edu/~hennessy/Future%20of%20Computing.pdf

Uniprocessor performance (single core)

Implications of CPU Evolution

• Increasing transistor count/clock speed
• Greater number of tasks can be executed concurrently

• Clock speed increases have almost stopped in the past few years
• Instead, more transistors = more CPU cores
• More cores = increased opportunity for parallelism

Amdahl’s Law

(1-P)P

Amdahl’s Law

(1-P)P Max improvement

Amdahl’s Law

(1-P)P (1-P)Max improvement

Amdahl’s Law

Amdahl’s Law

Concurrency

• In general, concurrency (like parallelism) is used because it is
necessary for a system to function.

• It is also largely motivated by increased performance
• The potential for more tasks to happen at once can thus increases

performance (especially, if we have multiple cores on our machine)

Concurrency

• In general, concurrency (like parallelism) is used because it is
necessary for a system to function.

• It is also largely motivated by increased performance
• The potential for more tasks to happen at once can thus increases

performance (especially, if we have multiple cores on our machine)

Concurrency comes with some
caveats however (next slide!)

Bad Concurrency = Data Race

• When two (or more) processes contending for one shared resource.

Bad Concurrency = Data Race

• When two (or more) processes contending for one shared resource.

One parking
spot 2 cars

want to
acquire

Data race is not always as obvious...(1/4)

• Imagine you check your fridge and
find there is no milk

• So you run to the store

Data race is not always as obvious...(2/4)

• Imagine you check your fridge and
find there is no milk

• So you run to the store

• Then moments later your roommate
checks the fridge and finds it is empty

• So they run to the store

Data race is not always as obvious...(3/4)

• Imagine you check your fridge and
find there is no milk

• So you run to the store

• Then moments later your roommate
checks the fridge and finds it is empty

• So they run to the store

• Roommate # 3 comes and notices the
same

•

Data race is not always as obvious...(4/4)

• You get the idea when you then find
out you have 3 times as much milk as
your house needs when everyone
returns.

Bad Concurrency = Deadlock

• Grid lock in a traffic jam

• Each car prevents others from going
through a shared resource (the
intersection).

• (One car needs a piece of the
intersection in order to move
forward)

Bad Concurrency = Starvation

• Imagine a constant stream of green cars

• Progress is still being made by the green
cars

• The yellow cars can never make progress
to get across the street.

• They are resource starved of a shared
resource (again, they cannot cross the
intersection)

Bad Concurrency = Starvation

Concurrent Programming needs some extra care

• Races

• Outcome depends on the arbitrary scheduling decisions
• e.g. Who gets the last seat on the airplane.

• Deadlock: Improper resource allocation prevents forward progress
• e.g. traffic gridlock

• Starvation/Fairness: External events and/or scheduling decisions can
prevent sub-task progress

• e.g. Someone jumping in front of you in line

• But regardless, concurrent programming is important and necessary to get
the most out of current processor architectures!

A Few Approaches to Concurrency

• Process-Based
• Fork() different processes
• Each process has its own private address space

• Event-Based
• Programmer manually interleaves multiple logical flows and polls

for events
• All flows share the same address space
• Uses technique called I/O multiplexing

• Thread-based (Today’s focus)
• Kernel automatically interleaves multiple logical flows
• Each flow shares the same address space
• Hybrid of process-based and event-based.

Threads

Problems with Processes

• Process creation is heavyweight (i.e. slow)

• IPC mechanisms are cumbersome

Problems with Processes

• Process creation is heavyweight (i.e. slow)
• Space must be allocated for the new process
• fork() copies all state of the parent to the child

• IPC mechanisms are cumbersome

Problems with Processes

• Process creation is heavyweight (i.e. slow)
• Space must be allocated for the new process
• fork() copies all state of the parent to the child

• IPC mechanisms are cumbersome
• Difficult to use fine-grained synchronization
• Message passing is slow

• Each message may have to go through the kernel

Threads

• Light-weight processes that share the same memory and state

• Every process has at least one thread

• Benefits:
• Resource sharing, no need for IPC
• Economy: faster to create, faster to context switch
• Scalability: simple to take advantage of multi-core CPUs

Process-Level Shared Data

Code
Global
Data

File
Descriptors

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3

Process-Level Shared Data

Code
Global
Data

File
Descriptors

Registers Stack

Thread 1

Single-Threaded Process Multi-Threaded Process

A Process can have Multiple Threads

• Each thread shares the same code, data, and kernel context

• A thread has its own thread id (TID)

• A thread has its own logical control flow (no need to exec)

• A thread has its own stack for local variables

View of Threads

• Threads associated with a process form a “pool” of peers
• Unlike processes (on the right) which form a tree hierarchy

(i.e. parent/child relationship)

Remember this diagram on Concurrent Processes?

• We looked at multiple processes running on a single core (next slide
for multiple cores)

Concurrent Thread (or Process) Execution

• Single Core Process
• Simulate parallelism

by time slicing

• Multi-Core Processor
• Can have true parallelism

Threads vs Processes

• Similarities
• Each has its own logical control flow
• Each can run concurrently with others

(possibly on different cores if available)
• Each is context switched

• Differences
• Threads share all code and data (except local stacks)

• Processes (typically) do not (i.e. fork makes a copy)
• Threads are usually less expensive than managing processes

• Process control is twice as expensive as thread control
• Linux estimates

• ~20k cycles to create and reap a process
• ~10k cycles to create and reap a thread

Pthreads

(POSIX Threads)

POSIX Pthreads

• POSIX
• Portable Operating System Interface

• POSIX standard API for thread creation
• IEEE 1003.1c
• Specification, not implementation

• Defines the API and the expected behavior
• … but not how it should be implemented

• Implementation is system dependent
• On some platforms, user-level threads
• On others, maps to kernel-level threads

Posix Threads API (PThreads Interface)

• Sample functions
• Creating and reaping threads

■ pthread_create()
■ pthread_join()

• Determining thread ID
■ pthread_self()

• Terminating threads
■ pthread_cancel()
■ pthread_exit()
• exit() - Terminates all threads
• return - terminates current thread

• Synchronizing access to shared variables
■ pthread_mutex_init (mutual exclusion lock)
• pthread_mutex_lock and pthread_mutex_unlock

Pthread examples

Hello Thread

• The thread that is “launched” is a
function in the program

• This is done when the thread
is created

• Different attributes can be
sent to threads (in this case
the first NULL)

• Arguments can also be
passed to the function
(second NULL)

Hello Thread

• The thread that is “launched” is a
function in the program

• This is done when the thread
is created

• Different attributes can be
sent to threads (in this case
the first NULL)

• Arguments can also be
passed to the function
(second NULL)

Hello Thread

• The thread that is “launched” is a
function in the program

• This is done when the thread
is created

• Different attributes can be
sent to threads (in this case
the first NULL)

• Arguments can also be
passed to the function
(second NULL)

• pthread_join is the equivalent
to “wait” for threads

Hello Thread

• The thread that is “launched” is a
function in the program

• This is done when the thread
is created

• Different attributes can be
sent to threads (in this case
the first NULL)

• Arguments can also be
passed to the function
(second NULL)

• pthread_join is the equivalent
to “wait” for threads

• What if we don’t call join?

Visual execution of “Hello Thread”

Launching multiple threads

• Store 10 thread ids.

Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

• Print out their thread ids to show
which thread is executing.

Launching multiple threads

• Store 10 thread ids.

• Launch 10 threads

• Print out their thread ids to show
which thread is executing.

• Join all of our threads with the
main thread

• (i.e. make the main thread wait
until all 10 threads have
executed.)

Launching multiple threads

• *New Program*

Launching multiple threads

• *New Program*

• This time launch 10000 threads

Launching multiple threads

• This time launch 10000 threads

• counter is shared between
threads

• What is wrong with this program?

Launching multiple threads

• This time launch 10000 threads

• counter is shared between
threads

• What is wrong with this program?

• What is the final output?

Launching multiple threads

• This time launch 10000 threads

• counter is shared between
threads

• What is wrong with this program?

• What is the final output?

What was happening?

Thread 1 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

Thread 2 (counter = counter + 1)

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

What was happening?

Thread 1 (counter = counter + 1)
Read “counter”: 11

Add 1 to “counter”: 12
Write to “counter”: 12

Thread 2 (counter = counter + 1)
Read “counter”: 11
Add 1 to “counter”: 12

Write to “counter”: 12

Thread 3 (counter = counter + 1)
Read “counter”: 12
Add 1 to “counter”: 13
Write to “counter”: 13

Synchronization of Threads

• Shared variables are thus handy for moving around data

• If we do not share properly, we can have synchronization errors!
• There is a solution however!
• (recap below)

=

Locks

• If multiple entities tries to acquire the lock, only one will succeed
• Lock cannot be shared

• If someone is holding the lock others have to wait until the lock holder
unlocks

• Lock can project shared variables or code regions that should not be
executed concurrently

Example with lock

• Included a pthread_mutex_lock

Example with lock

• Included a pthread_mutex_lock

• lock and unlock protects

• Locks in other words enforce, that
we have exclusive access to a
region of code.

B
LO

C
KS

EXEC
U

TIO
N

What was happening?

Thread 1 (counter = counter + 1)

pthread_mutex_lock

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

pthread_mutex_unlock

Thread 2 (counter = counter + 1)

pthread_mutex_lock

// Lock is held by thread 1 so

// thread 2 has to wait until

// thread 1 unlocks

// Now acquires the lock and runs

Read “counter”: 10

Add 1 to “counter”: 11

Write to “counter”: 11

pthred_mutex_unlock

• Included a pthread_mutex_lock

• lock and unlock protect

• Locks in other words enforce, that we
have exclusive access to a region of
code.

Example with lock

Posix Threads API (PThreads Interface)

• Sample functions
• Creating and reaping threads

■ pthread_create()
■ pthread_join()

• Determining thread ID
■ pthread_self()

• Terminating threads
■ pthread_cancel()
■ pthread_exit()
• exit() - Terminates all threads
• return - terminates current thread

• Synchronizing access to shared variables
■ pthread_mutex_init
• pthread_mutex_lock and pthread_mutex_unlock

