INTERNAL
REPRESENTATION OF FILES

As observed in Chapter 2, every file on a UNIX system has a unique inode. The
inode contains the information necessary for a process to access a file, such as file
ownership, access rights, file size, and location of the file’s data in the file system.
Processes access files by a well defined set of system calls and specify a file by a
character string that is the path name. Each path name uniquely specifies a file,
and the kernel converts the path name to the file’s inode.

This chapter describes the internal structure of files in the UNIX system, and
the next chapter describes the system call interface to files. Section 4.1 examines
the inode and how the kernel manipulates it, and Section 4.2 examines the internal
structure of regular files and how the kernel reads and writes their data. Section
4.3 investigates the structure of directories, the files that allow the kernel to
organize the file system as a hierarchy of files, and Section 4.4 presents the
algorithm for converting user file names to inodes. Section 4.5 gives the structure
of the super block, and Sections 4.6 and 4.7 present the algorithms for assignment
of disk inodes and disk blocks to files. Finally, Section 4.8 talks about other file
types in the system, namely, pipes and device files.

The algorithms described in this chapter occupy the layer above the buffer
cache algorithms explained in the last chapter (Figure 4.1). The algorithm iget
returns a previously identified inode, possibly reading it from disk via the buffer
cache, and the algorithm iput releases the inode. The algorithm bsmap sets kernel
parameters for accessing a file. The algorithm namei converts a user-level path

60

4.0 INTERNAL REPRESENTATION OF FILES 61

Lower Level File System Algorithms

namel

alloc free | ialloc ifree

iget iput bmap

buffer allocation algorithms

getblk brelse bread breada bwrite

Figure 4.1. File System Algorithms

name to an inode, using the algorithms iget, iput, and bmap. Algorithms alloc and
free allocate and free disk blocks for files, and algorithms ialloc and ifree assign
and free inodes for files.

4.1 INODES

4.1.1 Oefinition

Inodes exist in a static form on disk, and the kernel reads them into an in-core
inode to manipulate them. Disk inodes consist of the following fields:

o File owner identifier. Ownership is divided between an individual owner and a
“group” owner and defines the set of users who have access rights to a file. The
superuser has access rights to all files in the system.

o File type. Files may be of type regular, directory, character or block special, or
FIFO (pipes).

e File access permissions. The system protects files according to three classes:
the owner and the group owner of the file, and other users; each class has access
rights to read, write and execute the file, which can be set individually. Because
directories cannot be executed, execution permission for a directory gives the
right to search the directory for a file name.

e File access times, giving the time the file was last modified, when it was last
accessed, and when the inode was last modified.

62 INTERNAL REPRESENTATION OF FILES

e Number of links to the file, representing the number of names the file has in the
directory hierarchy. Chapter 5 explains file links in detail.

e Table of contents for the disk addresses of data in a file. Although usexrs treat
the data in a file as a logical stream of bytes, the kernel saves the data in
discontiguous disk blocks. The inode identifies the disk blocks that contain the
file’s data.

e File size. Data in a file is addressable by the number of bytes from the
beginning of the file, starting from byte offset 0, and the file size is | greater
than the highest byte offset of data in the file. For example, if a user creates a
file and writes only 1 byte of data at byte offset 1000 in the file, the size of the
file is 1001 bytes.

The inode does not specify the path name(s) that access the file.

owner mjb
group os
type regular file
perms rwxr-xr-x
accessed Oct 23 1984 1:45 P.M.
modified Oct 22 1984 10:30 A.M.
inode Oct 23 1984 1:30 P.M.
size 6030 bytes

disk addresses

Eigure 4.2. Sample Disk Inode

Figure 4.2 shows the disk inode of a sample file. This inode is that of a
regular file owned by *mjb,” which contains 6030 bytes. The system permits
“m)b™ to read, write, or execute the file; members of the group “os™ and all other
users can only read or execute the file, not write it. The last time anyone read the
file was on October 23, 1984, at 1:45 in the afternoon, and the last time anyone
wrote the file was on October 22, 1984, at 10:30 in the morning. The inode was
last changed on October 23, 1984, at 1:30 in the afternoon, although the data in
the file was not written at that time. The kernel encodes the above information in
the inode. Note the distinction between writing the contents of an inode to disk
and writing the contents of a file to disk. The contents of a file change only when
writing it. The contents of an inode change when changing the contents of a file or
when changing its owner, permission, or link settings. Changing the contents of a

4.1 INODES 63

file automatically implies a change to the inode, but changing the inode does not
imply that the contents of the file change.

The in-core copy of the inode contains the following fields in addition to the
fields of the disk inode:

e The status of the in-core inode, indicating whether

— the inode is locked,

- a process is waiting for the inode to become unlocked,

— the in-core representation of the inode differs from the disk copy as a result
of a change to the data in the inode,

— the in-core representation of the file differs from the disk copy as a result of
a change to the file data,

— the file is a mount point (Section 5.15).

e The logical device number of the file system that contains the file.

e The inode number. Since inodes are stored in a linear array on disk (recall
Section 2.2.1), the kernel identifies the number of a disk inode by its position in
the array. The disk inode does not need this field.

e Pointers to other in-core inodes. The kernel links inodes on hash queues and on
a free list in the same way that it links buffers on buffer hash queues and on the
buffer free list. A hash queue is identified according to the inode’s logical
device number and inode number. The kernel can cunlain at most one in-cure
copy of a disk inode, but inodes can be simultaneously on a hash queue and on
the free Iist.

o A reference count, indicating the number of instances of the file that are active
(such as when opened).

Many fields in the in-core inode are analogous to fields in the buffer header, and
the management of inodes is similar to the management of buffers. The inode lock,
when set, prevents other processes from accessing the inode; other processes set a
flag in the inode when attempting to access it to indicate that they should be
awakened when the lock is released. The kernel sets other flags to indicate
discrepancies between the disk inode and the in-core copy. When the kernel needs
to record changes to the file or to the inode, it writes the in-core copy of the inode
to disk after examining these flags.

The most striking difference between an in-core inode and a buffer header is the
in-core reference count, which counts the number of active instances of the file. An
inode is active when a process allocates it, such as when operring a file. An inode is
on the free list only if its reference count is 0, meaning that the kernel can
reallocate the in-core inode to another disk inode. The free list of inodes thus
serves as a cache of inactive inodes: If a process attempts to access a file whose
inode is not currently in the in-core inode pool, the kernel reallocates an in-core
inode from the free list for its use. On the other hand, a buffer has no reference
count; it is on the free list if and only if it is unlocked.

64 INTERNAL REPRESENTATION OF FILES

algorithm iget
input: file system inode number
output: locked inode
{
while (not done)
(
if (inode in inode cache)
{
if (inode locked)
{
sleep (event inode becomes unlocked);
continue; /* loop back to while ¢/
}
/* special processing for mount points (Chapter 5) ¢/
if (inode on inode free list)
remave from free list;
increment inode reference count;
return (inode);

}

/*® inode not in inode cache */
if (no inodes on free list)
return(error);
remove new inode from free list;
reset inode number angd file system;
remove inode from old hash queue, place en new one;
read inode from disk (algorithm bread);
initialize inode (e.g. reference count to 1);
return(inode);

Figure 4.3. Algorithm for Allocation of In-Core Inodes

4.1.2 Accessing inodes

The kernel identifies particular inodes by their file system and inode number and
allocates in-core inodes at the reguest of higher-level algorithms. The algorithm
iget allocates an in-core copy of an inode (Figure 4.3); it is almost identical to the
algorithm getblk for finding a disk block in the buffer cache. The kermel maps the
device number and inode number into a hash queue and searches the queue for the
inode. If it cannot find the inode, it allocates one from the free list and locks it.
The kernel then prepares to read the disk copy of the newly accessed inode into the
in-core copy. [t already knows the inode number and logical device and computes
the logical disk block that contains the inode accosding to how many disk inodes fit
into a disk block. The computation follows the formula

4.1 INODES 65

block num = ((inode number — 1) / number of inodes per block) +
start block of inode list

where the division operation returns the integer part of the quotient. For example,
assuming that block 2 is the beginning of the inode list and that there are 8 inodes
per block, then inode number 8 1s in disk block 2, and inode number 9 is in disk
block 3. If there are 16 inodes in a disk block, then inode numbers 8 and 9 are in
disk block 2, and inode number 17 is the first inode in disk block 3.

When the kernel knows the device and disk block number, it reads the block
using the algorithm bread (Chapter 2), then uses the following formula to compute
the byte offset of the inode in the block:

((inode number — 1) modulo (number of inodes per block)) * size of disk inode

For example, if each disk inode occupies 64 bytes and there are 8 inodes per disk
block, then inode number 8 starts at byte offset 448 in the disk block. The kernel
removes the in-core inode from the free list, places it on the correct hash queue,
and sets its in-core reference count to 1. It copies the file type, owner fields,
permission settings, link count, file size, and the table of contents from the disk
inode to the in-core inode, and returns a locked inode.

The kernel manipulates the inode lock and reference count independently. The
lock is set during execution of a system call to prevent other grocesses from
accessing the inode while it is in use (and possibly inconsistent). The kernel
releases the lock at the conclusion of the system call: an inode is never locked
across system calls. The kernel increments the reference count for every active
reference to a file. For example, Section 5.1 will show that it increments the inode
reference count when a process opens a file. It decrements the reference count only
when the reference becomes inactive, for example, when a process closes a file.
The reference count thus remains set across multiple system calls. The lock is free
between system calls to allow processes to share simultanecus access to a file; the
reference count remains set between system calls to prevent the kernel from
reallocating an active in-core inode. Thus, the kernel een lock and unlock an
allocated inode independent of the value of the reference count. System calls other
than open allocate and release inodes, as will be seen in Chapter 5.

Returning to algorithm iget, if the kernel attempts to take an inode from the
free list but finds the free list empty, it reports an error. This is different from the
philosophy the kernel follows for disk buffers, where a process sleeps until a buffer
becomes free: Processes have control over the allocation of inodes at user level via
execution of open and close system calls, and consequently the kernel cannot
guarantee when an inode will become available. Therefore, a process that goes to
sleep waiting for a free inode to become available may never wake up. Rather than
leave such a process “hanging,” the kernel fails the system call. However,
processes do not have such control over bufiers: Because a process cannot leeep a
buffer locked across system calls, the kernel can guarantee that a buffer will
become free soon, and a process therefore sleeps until one is available.

66 INTERNAL REPRESENTATION OF FILES

The preceding paragraphs cover the case where the kernel allocated an inode
that was not in the inode cache. If the inode is in the cache, the process (A) would
find it on its hash queue and check if the inode was currently locked by another
process (B). If the inode is locked, process A sleeps, setting a flag in the in-cote
inode to indicate that it is waiting for the inode to become free. When process B
later unlocks the inode, it awakens all processes (including process A) waiting for
the inode to become free. When process A is finally able to use the inode, it locks
the inode so that other processes cannot allocate it. If the reference count was
previously 0, the inode also appears on the free list, so the kernel removes it from
there: the inode is no longer free. The kernel increments the inode reference count
and returns a locked inode.

To summarize, the iget algornthm is used toward the beginning of system calls
when a process first accesses a file. The algorithm returns a locked inode structure
with reference count 1 greater than it had previously been. The in-core inode
contains up-to-date information on the state of the file. The kernel unlocks the
inode before returning from the system call so that other system calls can access
the inode if they wish. Chapter S treats these cases in greater detail.

algorithm iput /* release (put) access to in—core inode */
input: pointer to in—core inode
output: none

{

lock inode if not aiready locked;
decrement icode reference count;
if (reference count == Q)
{
if (inode link count == ()
{
free disk blocks for file (algorithm free, section 4.7);
set file type to O;
free inode (algorithm ifree, section 4.6);
}
if (file accessed or inode changed or file changed)
update disk inode;
put inode on free l'st;

)

release inode lock;

Figure 4.4. Releasing an Inode

4.1 INODES 67

4.1.3 Releasiag Inodes

When the kernel releases an inode (algorithm iput, Figure 4.4), it decrements its
in-core reference count. If the count drops to O, the kernel writes the inocde to disk
if the in-core copy differs from the disk copy. They differ if the file data has
changed, if the file access time has changed, or if the file owner or access
permissions have changed. The kernel places the inode on the free list of inodes,
effectively caching the inode in case it is needed again soon. The kernel may also
release all data blocks associated with the file and free the inode if the number of
links to the file is 0.

4.2 STRUCTURE OF A REGULAR FILE

As mentioned above, the inode contains the table of contents to locate a file’s data
on disk. Since each block on a disk is addressable by number, the table of contents
consists of a set of disk block numbers. If the data in a file were stored in a
contiguous section of the disk (that is, the file occupied a linear sequence of disk
blocks), then storing the start block address and the file size in the inode would
suffice to access all the data in the file. However, such an allocation strategy would
not allow for simple expansion and contraction of files in the file system without
running the risk of fragmenting free storage area on the disk. Furthermore, the
kernel would have to allocate and reserve contiguous space in the file system before
allowing operations that would increase the file size.

............ File A File B File C
40 L{1) 70
Block Addresses
------------ File A Free File C File B
40 SO 60 0 81
Block Addresses

Figure 4.5. Allocation of Contiguous Files and Fragmentation of Free Space

For example, suppose a user creates three files, A, B and C, each consisting of
10 disk blocle of storage, and suppose the system allocated storage for the three
files contiguously. [f the user then wishes to add S blocks of data to the middle file,
B, the kernel would have to copy file B to a place in the file system that had room
for 15 blocks of storage. Aside from the expense of such an operation, the disk

68 INTERNAL REPRESENTATION OF FILES

blocks previously occupied by file B’s data would be unusable except for files
smaller than 10 blocks (Figure 4.5). The kernel could minimize fragmentation of
storage space by periodically running garbage collection procedures to compact
available storage, but that would place an added drain on processing power.

For greater flexibility, the kernel allocates file space one block at a time and
allows the data in a file to be spread throughout the file system. But this allocation
scheme complicates the task of locating the data. The table of contents could
consist of a list of block numbers such that the blocks contain the data belonging to
the file, but simple calculations show that a linear Iist of file blocks in the inode is
difficult to manage. If a logical block contains 1K bytes, then a file consisting of
10K bytes would require an index of 10 block numbers, but a file contaimng 100K
bytes would require an index of 100 block numbers. Either the size of the inode
would vary according to the size of the file, or a relatively low limit would have to
be placed on the size of a file.

To keep the inode structure small yet still allow large files, the table of contents
of disk blocks conforms to that shown in Figure 4.6. The System V UNIX system
runs with 13 entries in the inode table of contents, but the principles are
independent of the number of entries. The blocks marked ‘“direct” in the figure
contain the numbers of disk blocks that contain real data. The block marked
“single indirect” refers to a block that contains a list of direct block numbers. To
access the data via the indirect block, the kernel must read the indirect block, find
the approprrate direct block entry, and then read the direct block to find the data.
The block marked “‘double indirect’ contains a list of indirect block numbers, and
the block marked “triple indirect™ contains a list of double indirect block numbers.

In principle, the method could be extended to support ‘“quadruple indirect
blocks,” *“quintuple indirect blocks,” and so on, but the current structure has
sufficed in practice. Assume that a logical block on the file system holds 1K bytes
and that a block number is addressable by a 32 bit (4 byte) integer. Then a block
can hold up to 256 block numbers. The maximum number of bytes that could be
held in a file is calculated (Figure 4.7) at well over 16 gigabytes, using 10 direct
blocks and 1 indirect, 1 double indirect, and 1 triple indirect block in the inode.
Given that the file size field in the inode is 32 bits, the size of a file is effectively
limited to 4 gigabytes (23%).

Processes access data in a file by byte offset. They work in terms of byte counts
and view a file as a stream of bytes starting at byte address O and going up to the
size of the file. The kernel converts the user view of bytes into a view of blocks:
The file starts at logical block O and continues to a logical block number
corresponding to the file size. The kernel accesses the inode and converts the
logical file block into the appropriate disk block. Figure 4.8 gives the algorithm
bmap for converting a file byte offset into a physical disk block.

Consider the block layout for the file in Figure 4.9 and assume that a disk block
contains 1024 bytes. If a process wants to access byte offset 9000, the kernel
calculates that the byte is in direct block 8 in the file (counting from 0). It then
accesses block number 367; the 808th byte in that block (starting from 0) is byte

4.2

Inode

STRUCTURE OF A REGULAR FILE

direct 0

direct 1

direct 5

direct 3

direct 4

direct 5

direct 5

direct 7

direct 8

direct 9

single

indirect

double
indirect

triple
indirect

Figure 4.6. Direct and Indirect Blocks in Inode

69

70 INTERNAL REPRESENTATION OF FILES

10 direct blocks with |K bytes each = 10K bytes
1 indirect block with 256 direct blocks = 256K bytes
1 double indirect block with 256 indirect blocks = 64M bytes
1 triple indirect block with 256 double indirect blocks = 16G bytes

Figure 4.7. Byte Capacity of a File — 1K Bytes Per Block

algorithm bmap /* block map of logical file byte offset to file system block */
input: (1) inode

(2) byte offset
output: (1) block number in file system

(2) byte offset into block

(3) bytes of 170 in black

(4) read ahead block number

calculate logical block number in file from byte oft'set;

calculate start byte in block for 1/0; /* output 2 */
calculate number of bytes to copy to user; /* output 3 */
check if read—ahead applicable, mark inode; /* output 4 */

determine level of indirection;
Evhile (not at necessary level of indirection)
calculate index into inode or indirect block from
logical block number in file;
get disk block number from inode or indirect block;
release buffer from previous disk read, if any (algorithm brelse);
if (no more levels of indirection)
| return (block number);
read indirect disk block (algorithm bread);
i adjust logical block number in file according to level of indirection;

Figure 4.8. Conversion of Byte Offset to Block Number in File System

9000 in the file. If a process wants to access byte offset 350,000 in the file, it must
access a double indirect block, number 9156 in the figure. Since an indirect block
has room for 256 block numbers, the first byte accessed via the double indirect
block is byte number 272,384 (256K + 10K):; byte number 350,000 in a file is
therefore byte number 77,616 of the double indirect block. Since each single
indirect block accesses 256K bytes, byte number 350,000 must be in the Oth single
indirect block of the double indirect block — block number 331. Since each direct
block in a single indirect block contains 1K bytes, byte number 77,616 of a single

4.2 STRUCTURE OF A REGUIAR FILE 71

4096

228

45423

11111
|

367

101 data block

367

428 //’////,,T;rEST'
7‘
9156 3333

915 3333
824 double indirect 33 data block
: single indirect

L

Figure 4.9. Block Layout of a Sample File and its Inode

indirect block i1s in the 75th direct block in the single indirect block — block
number 3333. Finally, byte number 350,000 in the file is at byte number 816 in
block 3333.

Examining Figure 4.9 more closely, several block entries in the inode are O,
meaning that the logical block entries contain no data. This happens if no process
ever wrote data into the file at any byte offsets corresponding to those blocks and
hence the block numbers remain at their initial value, 0. No disk space is wasted
for such blocks. Processes can cause such a block layout in a file by using the /seek
and write system calls, as described in the next chapter. The next chapter also
describes how the kermel takes care of read system calls that access such blocks.

The conversion of a large byte ofi'set, particularly one that is referenced via the
triple indirect block, is an arduous procedure that could require the kernel to access
three disk blocks in addition to the inode and data block. Even if the kernel finds

72 INTERNAL REPRESENTATION OF FILES

the blocks in the bufier cache, the operation is still expensive, because the kernel
must make multiple requests of the buffer cache and may have to sleep awaiting
locked buffers. How efiective is the algorithm in practice? That depends on how
the system is used and whether the user community and job mix are such that the
kernel accesses large files or small files more frequently. It has been observed
[Mullender 84], however, that most files on UNIX systems contain less than 10K
bytes, and many contain less than 1K bytes! Since 10K bytes of a file are stored in
direct blocks, most file data can be accessed with one disk access. So in spite of the
fact that accessing large files is an expensive operation, accessing common-<sized
files is fast.

Two extensions to the inode structure just described attempt to take advantage
of file size characteristics. A major principle in the 42 BSD file system
implementation [McKusick 84} is that the more data the kernel can access on the
disk in a single operation, the faster file access becomes. That argues for having
larger logical disk blocks, and the Berkeley implementation allows logical disk
blocks of 4K or 8K bytes. But having larger block sizes on disk increases block
fragmentation, leaving large portions of disk space unused. For instance, if the
logical block size is 8K bytes, then a file of size 12K bytes uses 1 complete block
and half of a second block. The other half of the second block (4K bytes) is
wasted; no other file can use the space for data storage. If the sizes of files are
such that the number of bytes in the last block of a file is uniformly distributed,
then the average wasted space is half a block per file; the amount of wasted disk
space can be as high as 45% for a file system with logical blocks of size 4K bytes
[McKusick 84]. The Berkeley implementation remedies the situation by allocating
a block fragment to contain the last data in a file. One disk block can contain
fragments belonging to several files. An exercise in Chapter 5 explores some details
of the implementation.

The second extension to the classic inode structure described here is to store file
data in the inode (see [Mullender 84]). By expanding the inode to occupy an
entire disk block, a small portion of the block can be used for the inode structures
and the remainder of the block can store the entire file, in many cases, or the end
of a file otherwise. The main advantage is that only one disk access is necessary to
get the inode and its data if the file fits in the inode block.

1. For a sample of 19,978 files, Mullender and Tannenbaum say thai approximately 85% of the files
were smaller than 8K bytes and that 48% were smaller than 1K bytes. Although these percentages
will vary from one installation to the nexi, they are representative of many UNIX systems.

4.3 DARECTORIES 73

4.3 DIRECTORIES

Recall from Chapter 1 that directories are the files that give the file system its
hierarchical structure; they play an important role in conversion of a file name to
an inode number. A directory is a file whose data is a sequence of entries, each
consisting of an inode number and the name of a file contained in the directory. A
path name is a null terminated character string divided into separate components
by the slash (“/”) character. Each component except the last must be the name of
a directory, but the last component may be a non-directory file. UNIX System V
restricts component names to a maximum of 14 characters; with a 2 byte entry for
the inode number, the size of a directory entry is 16 bytes.

Byte Offset Inode Number File Names
in Directory (2 bytes)
0 83
16 2 i
32 1798 init
48 1276 fsck
64 85 clri
80 1268 motd
96 1799 mount
112 88 mknod
128 2114 passwd
144 1717 umount
160 1851 checklist
176 92 fsdblb
192 84 config
208 1432 getty
224 0 crash
240 95 mkfs
256 188 inittab

Figure 4.10. Directory Layout for /etc

Figure 4.10 depicts the layout of the directory “etc™. Every directory contains
the file names dot and dot-dot (“.” and “.””) whose inode numbers are those of the
directory and its parent directory, respectively. The inode number of “.” in "/etc”
is located at offset O in the file, and its value is 83. The inode number of “.” is
located at offset 16, and its value is 2. Directory entries may be empty, indicated
by an inode number of O. For instance, the entry at address 224 in “/etc” is
empty, although it once contained an entry for a file named *‘crash”. The program
mkfs initializes a file system so that *.” and “..” of the root directory have the root
inode number of the file system.

74 INTERNAL REPRESENTATION OF FILES

The kernel stores data for a directory just as it stores data for an ordinary file,
using the inode structure and levels of direct and indirect blocks. Processes may
read directories in the same way they read regular files, but the kernel reserves
exclusive right to write a directory, thus insuring its correct structure. The access
permissions of a directory have the following meaning: read permission on a
directory allows a process to read a directory; write permission allows a process to
create new directory entries or remove old ones {via the creat, mknod, link, and
unlink system calls), thereby altering the contents of the directory; execute
permission allows a process to search the directory for a file name (it is meaningless
to execute a directory). Exercise 4.6 explores the difference between reading and
searching a directory.

4.4 CONVERSION OF A PATH NAME TO AN INODE

The initial access to a file is by its path name, as in the open. chdir (change
directory), or link system calls. Because the kernel works internally with inodes
rather than with path names, it converts the path names to inodes to access files.
The algorithm namei parses the path name one component at a time, converting
each component into an inode based on its name and the directory being searched,
and eventually returns the inode of the input path name (Figure 4.11).

Recall from Chapter 2 that every process is associated with (resides in) a
current directory; the v area contains a pointer to the current directory inode. The
current directory of the first process in the system, process 0, is the root directory.
The current directory of every other process starts out as the current directory of i
parent process at the time it was created (see Section 5.10). Processes change their
current directory by executing the chdir (change directory) system call. All path
name searches start from the current directory of the process unless the path name
starts with the slash character, signifying that the search should start from the root
directory. In either case, the kernel can easily find the inode where the path name
search starts: The current directory is stored in the process « area, and the system
root inode is stored in a global variable.?

Namei uses intermediate inodes as it parses a path name; call them working
inodes. The inode where the search starts is the first working inode. During each
iteration of the namei loop, the kernel makes sure that the working inode is indeed
that of a directory. Otherwise, the system would violate the assertion that non-
directory files can only be leaf nodes of the file system tree. The process must also
have permission to search the directory {(read permission is insufficient). The user
ID of the process must match the owner or group ID of the file, and execute

2. A process can erecute the chroot system call to change its notion of the file system root. The
changed root is stored in the # area.

44 CONVERSION OF A PATH NAME TO AN INODE 75

algorithm namei /* convert path name to inode */
input: path name
output: locked inode
{
if (path name starts from root)
working inode = root inode (algorithm iget);
else
working inode = current directory inode (algorithm iget):

while (there is more path name)
{
read next path name component from input;
verify that working inode is of directory, access permissions OK;
if (working inode is of root and component is "..")
continue; /* loop back to while */
read directory (working inode) by repeated use of algorithms
bmap, bread and breise;
if (component matches an entry in directory (working inode))
{
get inode number for matched component;
release working inode falgorithm iput);
working inode = inode of matched component (algorithm iget);
}
clse /* component not in directory */
return (no inode);
}

\ return (working inode);

Figure 4.11. Algorithm for Conversion of a Path Name to an Inode

permission must be granted, or the file must allow search to all users. Otherwise
the search fails.

The kernel does a linear search of the directory file associated with the working
inode, trying to match the path name component to a directory entry name.
Starting at byte offset O, it converts the byte ofiset in the directory to the
appropriate disk block according to algorithm bmap and reads the block using
algorithm bread. It searches the block for the path name component, treating the
contents of the block as a sequence of directory entries. If it finds a match, it
records the inode number of the matched directory entry, releases the block
(algorithm brelse) and the old working inode (algorithm iput), and allocates the
inode of the matched component (algorithm iget). The new inode becomes the
working inode. If the kernel does not match the path name with any names in the
block, it releases the block, adjusts the byte ofiset by the number of bytes in a
block, converts the new offset to a disk block number (algorithm bmap), and reads

76 INTERNAL REPRESENTATION OF FILES

the next block. The kernel repeats the procedure until it matches the path name
component with a directory entry name, or until it reaches the end of the directory.

For example, suppose a process wants to open the file “/etc/passwd”. When the
kernel starts parsing the file name, it encounters “/” and gets the system root
inode. Making root its current working inode, the kernel gathers in the string
“etc”. After checking that the current inode is that of a directory (“/””) and that
the process has the necessary permissions to search it, the kernel searches root for a
file whose name is “etc”: It accesses the data in the root directory block by block
and scarches each block one entry at a time until it locates an entry for “etc”. On
finding the entry, the kernel releases the inode for root (algorithm iput) and
allocates the inode for “etc” (algorithm iget) according to the inode number of the
entry just found. After ascertaining that “etc” is a directory and that it has the
requisite search permissions, the kernel searches “etc” block by block for a
directory structure entry for the file “passwd”. Referring to Figure 4.10, it would
find the entry for “passwd” as the ninth entry of the directory. On finding it, the
kernel releases the inode for “etc”, allocates the inode for “passwd”, and — since
the path name is exhausted — returns that inode.

It is natural to question the efficiency of a linear search of a directory for a path
name component. Ritchie points out {see page 1968 of [Ritchie 78bl) that a linear
search is efficient because it is bounded by the size of the directory. Furthermore,
early UNIX system implementations did not run on machines with large memory
space, so there was heavy emphasis on simple algorithms such as linear search
schemes. More complicated search schemes could require a different, more
complex, directory structure, and would probably run more slowly on small
directories than the linear search scheme.

4.5 SUPER BLOX

So far, this chapter has described the structure of a file, assuming that the inode
was previously bound to a file and that the disk blocks containing the data were
already assigned. The next sections cover how the kernel assigns inodes and disk
blocks. To understand those algorithms, let us examine the structure of the super
block.

The super block consists of the following fields:

the size of the file system,

the number of free blocks in the file system,

a list of free blocks available on the file system,

the index of the next free block in the free block list,
the size of the inode list,

the number of free inodes in the file system,

a list of free inodes in the file system,

the index of the next free inode in the free inode list,

4.5 SUPER BLOCK 77

e lock fields for the free block and free inode lists,
e a flag indicating that the super block has been modified.

The remainder of this chapter will explain the use of the arrays, indices and locks.
The kernel periodically writes the super block to disk if it had been modified so that
it is consistent with the data in the file system.

4.6 INODE ASSIGNMENT TO A NEW FILE

The kernel uses algorithm iger to allocate a known inode, one whose (file system
and) inode number was previously determined. In algorithm namei for instance,
the kernel determines the inode number by matching a path name component to a
name in a directory. Another algorithm, ialloc, assigns a disk inode to a newly
created file.

The file system contains a linear list of inodes, as mentioned in Chapter 2. An
inode is free if its type field is zero. When a process needs a new inode, the kernel
could theoretically search the inode list for a free inode. However, such a search
would be expensive, requiring at least one read operation (possibly from disk) for
every inode. To improve performance, the file system super block contains an array
to cache the numbers of free inodes in the file system.

Figure 4.12 shows the algorithm ialloc for assigning new inodes. For reasons
cited later, the kernel first verifies that no other processes have locked access to the
super block free inode list. If the list of inode numbers in the super block is not
empty, the kernel assigns the next inode number, allocates a free in-core inode for
the newly assigned disk inode using algorithm iget (reading the inode from disk if
necessary), copies the disk inode to the in-core copy, initializes the fields in the
inode, and returns the locked inode. It updates the disk inode to indicate that the
inode is now in use: A non-zero file type field indicates that the disk inode is
assigned. In the simplest case, the kernel has a good inode, but race conditions
exist that necessitate more checking, as will be explained shortly. Loosely defined,
a race condition arises when several processes alter common data structures such
that the resulting computations depend on the order in which the processes
executed, even though all processes obeyed the locking protocol. For example, it is
implied here that a process could get a used inode. A race condition is related to
the mutual exclusion problem defined in Chapter 2, except that locking schemes
solve the mutual exclusion problem there but may not, by themselves, solve all race
conditions.

If the super block list of free inodes is empty, the kernel searches the disk and
places as many free inode numbers as possible into the super block. The kernel
reads the inode list on disk, block by block, and fills the super block list of inode
aumbers to capacity, remembering the highest-numbered inode that it finds. Call
that inode the “remembered” inode; it is the last one saved in the super block. The
next time the kernel searches the disk for free inodes, it uses the remembered inode
as its starting point, thereby assuring that it wastes no time reading disk blocks

INTERNAL REPRESENTATION OF FILES

algorithm ialloc /* allocate inode */
input: file system
output: locked inode

{
while (not done)
{
if (super block locked)
{
sleep (event super block becomes free);
continue; /°® while loop */
}
if (inode list in super block is empty)
{
lock super block;
get remembered inode for free inode search;
search disk for free inodes untyl super block full,
or no more free inodes (algorithms bread and brelse);
unlock super block;
wake up (event super block becomes free);
if (no free inodes found on disk)
return (no inode);
set remembered inode for next free inode search;
]
/* there are inodes in super block inode list */
get inode number from super block inode list;
get inode (algorithm iget);
if (inode not free after all) /1°me/
{
write inode to disk;
release inode (algorithm iput);
continwe; /® while loop */
l
/® imode is frec */
initialize inode;
write inode to disk;
decvernent file systemn free inode count;
return (inode);
)

Figure 4.12. Algorithm for Assigning New Inodes

4.6 INODE ASSIGNMENT TO A NEW FILE 9

where no free inodes should exist. After gathering a fresh set of free inode
numbers, it starts the inode assignment algorithm from the beginning. Whenever
the kernel assigns a disk inode, it decrements the free inode count recorded in the
super block.

Super Block Free Inode List

iromodes o | &3 | a8 A— empy
18 19 20 array 1
Tindex
Super Block Free Inode List
IO S R O (R, I o S -
1% 9 20 array
Tindcx

(a) Assigning Free Inode from Middle of List

Super Block Free Inode List

.(..419.....................................e.‘?’.p.tx ... -

Tindcx “{remembered inode)

Supcr‘.B'lock Free Inode List : array 2
535 free inodes 476 475 471
] R R R e R O K R R RN L t SCOCRERERN EEXEIPUE TN TUEREY -

48 49 50
indexT

(b) Assigning Free Inode - Super Block List Empty

Figure 4.13. Two Arrays of Free Inode Numbers

80 INTERNAL REPRESENTATION OF FILES

Consider the two pairs of arrays of free inode numbers in Figure 4.13. If the
list of freec inodes in the super block looks like the first array in Figure 4.13(a)
when the kernel assigns an inode, it decrements the index for the next valid inode
number to 18 and takes inode number 48. If the list of free inodes in the super
block looks like the first array in Figure 4.13(b), it will notice that the array &
empty and search the disk for free inodes, starting from inode number 470, the
remembered inode. When the kermel fills the super block free list to capacity, it
remembers the last inode as the start point for the next search of the disk. The
kernel assigns an inode it just took from the disk (number 471 in the figure) and
continues whatever it was doing.

algorithm ifree /* inode free */
input: file system inode number
output: none

increment file system free inode count;
if (super block locked)
return;
if (inode list full)
(
if (inode number !ess than remembered inode for search)
set remembered inode for search = input inode number;
)
clse
store inode number in inode list;
return;

Figure 4.14. Algonithm for Freeing Inode

The algorithm for freeing an inode is much simpler. After incrementing the
total number of available inodes in the file system, the kernel checks the lock on the
super block. If locked, it avoids race conditions by returning immediately: The
inode number is not put into the super block, but it can be found on disk and is
available for reassignment. If the list is not locked, the kernel checks if it has room
for more inode numbers and, if it does, places the inode number in the list and
returns. If the list is full, the kernel may not save the newly freed inode there: It
compares the number of the freed inode with that of the remembered inode. If the
freed inode number is less than the remembered inode number, it “remembers” the
newly frccd inode number, discarding the old remembered inode number from the
super block. The inode is not lost, because the kernel can find it by searching the
inode list on disk. The kernel maintains the super block list such that the last inode
it dispenses from the list is the remembered inode. Ideally, there should never be
free inodes whose inode number is less than the remembered inode number, but

4.6 INODE ASSIGNMENT TO A NEW FILE 81

53S fetcinodes 476 475 471
T R R R R cecesscesisacasoacochoscssnacsfocicccnne booeas >
S 4% 49y S0
remembered inode index’
(a) Original Super Block List of Free Inodes
499 free inodes 476 475 471
Bt PRI RUA PR | o3) S o [EEsopped SEmdon it e -
a 39 5
remembered inode . dcxf
(b) Free Inode 499
- free inodes 476 | 475 | 471
B R R I R R N hecosscacnfoccscnonsshosens T
[49 U
remembered inode in dexT

(c) Free Inode 601

Figure 4.15. Placing Free Inode Numbers into the Super Block

exceptions are passible.

Consider two examples of freeing inodes. If the super block list of free inodes
has room for more free inode numbers as in Figure 4.13(a), the kernel places the
inode number on the list, increments the index to the next free inode, and proceeds.
But if the list of free inodes is full as in Figure 4.15, the kernel compares the inode
number it has freed to the remembered inode number that will start the next disk
search. Starting with the free inode list in Figure 4.1 5(a), if the kernel frees inode
499, it makes 499 the remembered inode and evicts number 535 from the free list.
If the kernel then frees inode number 601, it does not change the contents of the
free list. When it later uses up the inodes in the super block free list, it will search
the disk for free inodes starting from inode number 499, and find inodes 535 and
601 again.

82 INTERNAL REPRESENTATION OF FILES

Process A Process B Process C

Assigns inode |
from super block :

Sleeps while
reading inode (a)

Tries to assign inode
from super block

Super block empty (b)

Search for free
inodes on disk,
puts inode I
in super block (c)

Inode I in core
Does usual activity

Completes search,
assigns another inode (d)

Assigns inode I
from super block

I is in use!

/ .) -
Time Assign another inode (e)

Figure 4.16. Race Condition in Assigning Inodes

The preceding paragraph described the simple cases of the algorithms. Now
consider the case where the kernel assigns a new inode and then allocates an in-core
copy for the inode. The algorithm implies that the kernel could find that the inode
had already been assigned. Although rare, the following scenario shows such a case
(refer to Figures 4.16 and 4.17). Consider three processes, A, B, and C, and
suppose that the kernel, acting on behalf of process A,* assigns inode I but goes to
sleep before it copies the disk inode into the in-core copy. Algoritluns iget (invoked

3. Asin the last chapter, the term “process™ here will mean *“the kermel, acting on behalf of a process.”

46 INODE ASSIGNMENT TO A NEW FILE 83

Time
(a) N U e A
(b) DI 1 S
@ 8 8 O o OO (1
@ T R S SRR B 8
(e) > i 5 freemodec L

'}

Figure 4.17. Race Condition in Assigning Inodes (continued)

by ialloc) and bread (invoked by iget) give process A ample opportunity to go to
sleep. While process A is asleep, suppose process B attempts to assign a new inode
but discovers that the super block list of free inodes is empty. Process B searches
the disk for free inodes, and suppose it starts its search for free inodes at an inode
number lower than that of the inode that A is assigning. [t is possible for prooess
B to find inode I free on the disk since process A is still asleep, and the kernel does
not know that the inode is about to be assigned. Process B, not realizing the
danger, completes its search of the disk, fills up the super block with (supposedly)
free inodes, assigns an inode, and departs from the scene. However, inode [is in
the super block free list of inode numbers. When process A wakes up, it completes
the assignment of inode I. Now suppose process C later requests an inode and
happens to pick inode I from the super block free list. When it gets the in-core
copy of the inode, it will find its file type set, implying that the inode was already
assigned. The kernel checks for this candition and, finding that the inode has been
assigned, tries to assign a new one. Writing the updated inode to disk immediately
after its assignment in falloc makes the chance of the race smaller, because the file
type field will mark the inode in use.

84 INTERNAL REPRESENTATION OF FILES

Locking the super block list of inodes while reading in a new set from disk
prevents other race conditions. If the super block list were not locked, a process
could find it empty and try to populate it from disk, occasionally sleeping while
waiting for 1I/O completion. Suppose a second process also tried to assign a new
inode and found the list empty. It, too, would try to populate the list from disk.
At best, the two processes are duplicating their efforts and wasting CPU power. At
worst, race conditions of the type described in the previous paragraph would be
more frequent. Similarly, if a process freeing an inode did not check that the list is
locked, it could overwrite inode numbers already in the free list while another
process was populating it from disk. Again, the race conditions described above
would be more frequent. Although the kernel handles them satisfactorily, system
performance would suffer. Use of the lock on the super block free list prevents
such race conditions.

4.7 ALLOCATION OF DISK BLOCKS

When a process writes data to a file, the kernel must allocate disk blocks from the
file system for direct data blocks and, sometimes, for indirect blocks. The file
system super block contains an array that is used to cache the numbers of free disk
blocks in the file system. The utility program mkfs (make file system) organizes
the data blocks of a file system in a linked list, such that each link of the list is a
disk block that contains an array of free disk block numbers, and one array entry 1s
the number of the next block of the linked list. Figure 4.18 shows an example of
the linked list, where the first block is the super block free list and later blocks on
the linked list contain more free block numbers.

When the kernel wants to alfocate a block from a file system (algorithm alloc,
Figure 4.19), it allocates the next available block in the super block list. Once
allocated, the block cannot be reallocated until it becomes free. If the allocated
block is the last available block in the super block cache, the kernel treats it as a
pointer to a block that contains a list of free blocks. It reads the block, populates
the super block array with the new Iist of block numbers, and then proceeds to use
the original block number. It allocates a buffer for the block and clears the buffer’s
data (zeros it). The disk block has now been assigned, and the kernel has a buffer
to work with. If the file system contains no free blocks, the calling process receives
an error.

If a process writes a lot of data to a file, it repeatedly asks the system for blocks
to store the data, but the kernel assigns only one block at a time. The program
mik fs tries to organize the original linked list of free block numbers so that block
numbers dispensed to a file are near each other. This helps performance, because it
reduces disk seck time and latency when a process reads a file sequentially. Figure
4.18 depicts block numbers in a regular pattern, presumably based on the disk
rotation speed. Unfortunately, the order of block numbers on the free block linked
lists breaks down with heavy use as processes write files and remove them, because
block numbers enter and leave the free list at random. The kermel makes no

4.7 Allocation of Disk Blocks 8s

super block list

109 [106 1103 J100 | ----ecaceecacvacasns

— I ‘

109

211 [208 |205 [202 | eoreeeeeee [112
|

211

310 |307 (304 {301 | -eoeverenne . [214
|

310

409 [406 |403 | 400 313
|

Figure 4.18. Linked List of Free Disk Block Numbers

attempt to sort block numbers on the free list.

The algorithm free for freeing a block is the reverse of the one far allocating a
block. If the super block list is not full, the block number of the newly freed block
is placed on the super block list. If, however, the super block list is full, the newly
freed block becomes a link block; the kernel writes the super block list into the
block and writes the block to disk. It then places the block number of the newly
freed block in the super block list: That block number is the only member of the
list.

Figure 4.20 shows a sequence of alloc and free operations, starting with one
entry on the super block free list. The kernel frees block 949 and places the block
number on the free list. It then allocates a block and removes block number 949
from the free list. Finally, it allocates a block and removes block number 109 from
the free list. Because the super block free list is now empty, the kernel replenishes
the list by copying in the contents of block 109, the next link on the linked Ist
Figure 4.20(d) shows the full super block list and the next link block, block 211.

The algorithms for assigning and freeing inodes and disk blocks are similar in
that the kernel uses the super block as a cache containing indices of free cesources,
block numbers, and inode numbers. It maintains a linked list of block numbers
such that every free block number in the file system appears in some element of the
linked list, but it maintains no such list of free inodes. There are three reasons for

86

INTERNAL REPRESENTATION OF FILES

algorithm alloc /° file system block allocation ®/
input: file system number
output: buffer far new block
{
while {super block locked)
sleep (event super block not locked);
remove block from super block free list;
if (removed last block from free list)
{
lock super block;
read block just taken from free list (algorithm bread);
copy block numbers in block into super block;
release block buffer (algorithm brelse);
unlock super block;
wake up processes {event super block not locked);
}
get buffer far block removed from super block list {algorithm getblk);
zero bufler contents;
decrement total count of free blocks;
mark super block modified;
return buffer;

Figure 4.19. Algorithm for Allocating Disk Block

the different treatment.

1.

The kernel can determine whether an inode is free by inspection: If the file
type field is clear, the inode is free. The kernel needs no other mechanism to
describe free inodes. However, it cannot determine whether a block is free
Just by looking at it. It could not distinguish between a bit pattern that
indicates the block is free and data that happened to have that bit pattem
Hence, the kernel requires an external method to identify free blocks, and
traditional implementations have used a linked list.

Disk blocks lend themselves to the use of linked lists: A disk block easily
holds large lists of free block numbers. But inodes have no convenient place
for bulk storage of large lists of free inode numbers.

Users tend to consume disk block resources more quickly than they consume
inodes, so the apparent lag in performance when searching the disk for free
inodes is not as critical as it would be for searching for free disk blocks.

48

OTHER FILE TYPES

super block list

109
1

--

109

q

211

208120820 | et tiiu e 12

(a) Original configuration

super block list

109
|

DA . ot A deb il B, T el

109

211

4

208, [205 URBE| = -3 s « oo ope < ook S8 112

(b) After freeing block number 949

super block list

109

109

211

SRR

2081205202/ "ok L et b, o0 112

(c) After assigning block number (949)

super block list

211 1208 1205 1202 | -----iiiieiieiie, 112
I

211

344 (341 |338 |335 [-c-ceceecereiraniiiiieenns 243

(d) After assigning block number (109)
replenish super block free list

Figure 4.20. Requesting and Freeing Disk Blocks

87

88 INTERNAL REPRESENTATION OF FILES

48 OTHER FILE TYPES

The UNIX system supports two other file types: pipes and special files. A pipe,
sometimes called a fifo (for “first-in-first-out™), differs from a regular file in that its
data is transient: Once data is read from a pipe, it cannot be read again. Also, the
data is read in the order that it was written to the pipe, and the system allows nc
deviation from that order. The kernel stores data in a pipe the same way it stores
data in an ordinary file, except that it uses only the direct blocks, not the indirect
blocks. The next chapter will examine the implementation of pipes.

The last file types in the UNIX system are special files, including block device
special files and character device special files. Both types specify devices, and
therefore the file inodes do not reference any data. Instead, the inode contains two
numbers known as the major and minor device numbers. The major number
indicates a device type such as terminal or disk, and the minor number indicates
the unit number of the device. Chapter 10 examines special devices in detail.

4.9 SUMMARY

The inode is the data structure that describes the attributes of a file, including the
layout of its data on disk. There are two versions of the inode: the disk copy that
stores the inode information when the file i not in use and the in-core copy that
records information about active files. Algorithms ialloc and ifree control
assignment of a disk inode to a file during the creat, mknod, pipe, and unlink
system calls (next chapter), and the algorithms iget and iput control the allocation
of in-core inodes when a process accesses a file. Algorithm bmap locates the disk
blocks of a file, according to a previously supplied byte offset in the file. Directories
are files that correlate file name components to inode numbers. Algorithm ngmei
converts file names manipulated by processes to inodes, used internally by the
kernel. Finally, the kernel controls assignment of new disk blocks to a file using
algorithms alloc and free.

The data structures discussed in this chapter consist of linked lists, hash queues,
and linear arrays, and the algorithms that manipulate the data structures are
therefore simple. Complications arise due to race conditions caused by the
interaction of the algorithms, and the text has indicated some of these timing
problems. Nevertheless, the algorithms are not elaborate and illustrate the
simplicity of the system des’ign.

The structures and algorithms explained here are internal to the kernel and are
not visible to the user. Referring to the overall system architecture (Figure 2.1),
the algorithms described in this chapter occupy the lower half of the file subsystem.
The next chapter examines the system calls that provide the user interface to the
file system, and it describes the upper half of the file subsystem that invokes the
internal algorithms described here.

4.9

EXERCISES 89

4.10 EXERCISES

L

2.

The C language convention counts array indices from 0. Why do inode numbers start
from 1 and not 0?

If a process sleeps in algorithm iget when it finds the inode locked in the cache, why
must it start the loop again from the beginning after waking up?

Describe an algorithm that takes an in<core inode as input and updates the
corresponding disk inode.

The algorithms iger and iput do not require the processor execution level to be raised
to block out interrupts. What does this imply?

How cfficiently can the loop for mdirect blocks m bmap be encoded”

mkdir junk
foriin12345
do

echo hello > junk/Si
done

s —d junk

s =i junk
chmod —r junk
Is —Id junk

Is junk

Is =1 junk

od junk

pwd

Is =1

echo *

cd ..

chmod +r junk
chmod —x junk
Is junk

Is =1 junk

od junk

chmod +x junk

Figure 4.21. Difference between Read and Search Permission on Directorics

6. Execute the shell command script in Figure 4.21. It creates a directory “junk™ and

creates five files in the directory. After doing some control /s commands, the chmod
command turns off read permission for the directory. What happens when the various
{s commands are executed now? What happens after changing directory into *junk™?
After restoring read permission but removing execute (search) permission from “junk”,
repeat the experiment. What happens? What is happening in the kernel to cause this
behavior?

Given the current structure of a directory entry on a System V system, what is the
maximum number of files a file system can contain?

* 10.

*18.

* 3.

14.

e £

INTERNAL REPRESENTATION OF FILES

UNIX System V allows a maximum of 14 characters for a path name component.
Namei truncates extra characters in a component. How should the file system and
respective algorithms be redesigned to allow arbitrary length component names?
Suppose a user has a private version of the UNIX system but changes it so that a path
name component can consist of 30 characters; the private version of the operating
system stores the directory entries the same way that the standard operating system
does, except that the directory entries are 32 bytes long instead of 16. If the user
mounts the private file system on a standard system, what would happen in algorithm
namei when a process accesses a file on the private file system?

Consider the algorithm namei for converting a path name into an inode. As the search
progresses, the kernel checks that the current working inode is that of a directory. Is
it possible for another process to remove {unlink) the directory? How can the kemel
prevent this? The next chapter will come back to this problem.

Design a directory structure that improves the efficiency of searching for path names
by avoiding the Linear search. Consider two techniques: hashing and n-ary trees.
Design a scheme that reduces the number of directory searches for file names by
caching frequently used names.

Ideally. a file system should never contain a free inode whose inode number is less than
the ‘‘remembered” inode used by ialloc. How is it possible for this assertion to be
false?

The super block is a disk block and contains other information besides the free block
list, as described in this chapter. Therefore, the super block free list cannot contain as
many free block numbers as can be potentially stored in a disk block on the linked list
of free disk blocks. What is the optimal number of free block numbers that should be
stored in a block on the linked TIst?

Discuss a system implementation that keeps track of free disk blocks with a bit map
instead of a linked list of blocks. What are the advantages and disadvantages of this
scheme?

SYSTEM CALLS
FOR THE FILE SYSTEM

The last chapter described the internal data structures for the file system and the
algorithms that manipulate them. This chapter deals with system calls for the file
system, using the concepts explored in the previous chapter. [t starts with system
calls for accessing existing files, such as open, read, write, Iseek, and close, then
presents system calls to create new files, namely, creat and mknod, and then
examines the system calls that manipulate the inode or that maneuver through the
file system: chdir, chroot, chown, chmod, stat, and fstat. It investigates more
advanced system calls: pipe and dup are important for the implementation of pipes
in the shell; mount and umount extend the file system tree visible to users; link and
unlink change the structure of the file system hierarchy. Then, it presents the
notion of file system abstractions, allowing the support of various file systems as
long as they conform to standard interfaces. The last section in the chapter covers
file system maintenance. The chapter introduces three kernel data structures: the
file table, with one entry allocated for every opened file in the system, the user file
descriptor table, with one entry allocated for every file descriptor known to a
process, and the mount table, containing information for every active file system.

Figure 5.1 shows the relationship between the system calls and the algorithms
described previously. It classifies the system calls into several categories, although
some system calls appear in more than one category:

91

n SYSTEM CALLS FOR THE FILE SYSTEM

File System Calls

;,:]‘; . Useof |Assign| File |File | File Sys Tree
0 namei inodes | Attributes | I/0 [Structure Nampulatxon
open stat '

open creat link | creat

creat| chdir unlink |mknod

chown read chdir
dup

. chmod write Hount
chroot mknod| link umount chown

i p stat
52:2 | chown mount| unlink i
chmod umount

Lower Level File System Algorithms
namei

iget iput ialloc ifree | alloc free bmap

buffer allocation algorithms
getblk brelse bread breada Dbwrite

Figure 5.1. File System Calls and Relation to Other Algorithms

System calls that return file descriptors for use in other system calls;

System calls that use the namei algorithm to parse a path name;

System calls that assign and free inodes. using algorithms ialloc and ifree;
System calls that set or change the attributes of a file;

System calls that do I/0 to and from a process, using algorithms alloc, free,
and the buffer allocation algorithms;

System calls that change the structure of the file system;

e System calls that allow a process to change its view of the file system tree.

L]

S.1 OPEN

The open system call is the first step a process must take to access the data in a
file. The syntax for the open system call is

fd = open(pathname, flags, modes);

where pathname is a file name, flags indicate the type of open (such as for reading
or writing), and modes give the file permissions if the file is being created. The
open system call returns an integer' called the user file descriptor. Other file

Ss1 OPEN 923

operations, such as reading, writing, seeking, duplicating the file descriptor, setting
file [/O parameters, determining file status, and closing the file, use the file
descriptor that the open system call returns.

The kernel searches the file system for the file name parameter using algorithm
namei (see Figure 5.2). It checks permissions for opening the file after it finds the
in-core inode and allocates an entry in the file table for the open file. The file table
entry contains a pointer to the inode of the open file and a field that indicates the
byte offset in the file where the kernel expects the next read or write to begin. The
kernel initializes the offset to O during the open call, meaning that the initial read
or write starts at the beginning of a file by default. Alternatively, a process can
open a file in write-append mode, in which case the kernel initializes the offset to
the size of the file. The kernel allocates an entry in a private table in the process u
area, called the user file descriptor table, and notes the index of this entry. The
index is the file descriptor that is returned to the user. The entry in the user file
table points to the entry in the global file table.

algorithm open
inputs; file name
type of open
file permissions (for creation type of open)
ontput: file descriptor
{
convert file name to inode (algorithm namei);
if (file does not exist or not permitted access)
return(error);
allocate file table entry for inode, initialize count, offset;
allocate user file descriptor entry, set pointer to file table entry;
if (type of open specifies truncate file)
frec all file blocks (algorithm firee);
unlock(inode): /* locked above in namei */
return(user file descriptor);

Figure §.2. Algorithm for Opening a File

Suppose a process executes the following code, opening the file “/etc/passwd”

twice, once read-only and once write-only, and the file “local” once, for reading and
writing.?

1. All system calls return the value ~1 if they fai. The return value —1 will not be explicitly
mentioned when discussing the syntax of the system calls.

2. The definition of the open system call specifies three parameters (the third is used for the create
mode of open), but programmers usually use only the first two. The C compiler does not check that
the number of parameters is correct. System implementati'ons typically pass the first two parameters
and a third “garbage” parameter (whatever happens to be on the stack) to the kernel. The kernel

9% SYSTEM CALLS FOR THE FILE SYSTEM

user file
descriptor table file table inode table
0
1
2
3 :
2 X\ : conzx "(fetcs passwd)
\
6 TN oMM Read”
7
t
I Rd-Wrt
co;mt (local)
.
count
1 Write

Figure 5.3. Data Structures after Open

fdl = open(“/etc/passwd”, O_RDONLY);
fd2 = open(*iocal”, O RDWR);
fd3 = open(*/etc/passwd”, O_ WRONLY);

Figure 5.3 shows the relationship between the inode table, file table, and user file
descriptor data structures. Each open returns a file descriptor to the process, and
the corresponding entry in the user file descriptor table points to a unique entry in

does not check the third parameter unless the second parameter indicates that it must, allowing
programmers to encode only two paramelers.

5.1

user file
descriptor tables

(proc A)

MbAUN—O

(proc B)
0
1
2
3 .
4 O
b)

OPEN

file table

inode table

\ :
NG \ -
count pead

1

co;mt(/clc/ passw

" Rd-Wrt)

count /
Read

count

" (local)

count Sl
Write

t .
conlm (private)

e

/
CO;ll'lt Read

Figure 5.4. Data Structures after Two Processes Open Files

% SYSTEM CALLS FOR THE FILE SYSTEM

the kernel file table even though one file (““/etc/passwd™) is opened twice. The file
table entries of all instances of an open file point to one entry in the in-core inode
table. The process can read or write the file *“/etc/passwd” but only through file
descriptors 3 and S in the figure. The kernel notes the capability to read or write
the file in the file table entry allocated during the open call. Suppose a second
process executes the following code.

fdl = open(*“/etc/passwd”, O_RDONLY);
fd2 = open(“private”, O_RDONLY);

Figure 5.4 shows the relationship between the appropriate data structures while
both processes (and no others) have the files open. Again, each open call results in
allocation of a unique entry in the user file descriptor table and in the kernel file
table, but the kernel contains at most one entry per file in the in-core inode table.

The user file descriptor table entry could conceivably contain the file offset for
the position of the next I/0 operation and point directly to the in-core inode entry
for the file, eliminating the need for a separate kernel file table. The examples
above show a one-to-one relationship between user file descriptor entries and kernel
file table entries. Thompson notes, however, that he implemented the file table as a
separate structure to allow sharing of the offset pointer between several user file
descriptors (sec page 1943 of [Thompson 78]). The dup and fork system calls,
explained in Sections 5.13 and 7.1, manipulate the data structures to allow such
sharing.

The first three user file descriptors (0, 1, and 2) are called the standard input,
standard output, and standard error file descriptors. Processes on UNIX systems
conventionally use the standard input descriptor to read input data, the standard
output descriptor to write output data, and the standard error descriptor to write
error data (messages). Nothing in the operating system assumes that these file
descriptors are special. A group of users could adopt the convention that file
descriptors 4, 6, and 11 are special file descriptors, but counting from 0 (in C) is
much more natural. Adoption of the convention by all user programs makes it easy
for them to communicate via pipes, as will be seen in Chapter 7. Normally, the
control terminal (see Chapter 10) serves as standard input, standard output and
standard error.

5.2 READ
The syntax of the read system call is
number = read(fd, buffer, count)

where fd is the file descriptor returned by open, buffer is the address of a data
structure in the user process that will contain the read data on successful
completion of the call, count is the number of bytes the user wants to read, and
number is the number of bytes actually read. Figure 5.5 depicts the algorithm read
for reading a regular file. The kernel gets the file table entry that corresponds to

5.2 READ 97

algorithm read
input: user file descriptor
address of buffer in user process
number of bytes to read
output: count of bytes copied into user space
(
get file table entry from user file descriptor;
check file accessibility;
set parameters in u area for user address, byte count, 1/0O to user;
get inode from file table;
lock inode;
set byte offset in u area from file table offset;
while (count not satisfied)
{
convert file offset to disk block (algorithm bmap);
calculate offset into block, number of bytes to read;
if (number of bytes to read is O)
/* trying to read end of file */
break; /* out of loop */
read block (algorithm breada if with read ahead, algorithm
bread otherwise);
copy data from system buffer to user address;
update u area fields for file byte offset, read count,
address to write into user space;
release buffer; /°® locked in bread */
}
unlock inode;
update file table offset for next read;
return{total sumber of bytes read);

Figure 5.5. Algorithm for Reading a File

the user file descriptor, following the pointer in Figure 5.3. 1t now sets several 1/0
parameters in the u area (Figure 5.6), eliminating the need to pass them as
function parameters. Specifically, it sets the /0O mode to indicate that a read is
being done, a flag to indicate that the I/0 will go to user address space, a count
field to indicate the number of bytes to read, the target address of the user data
bufler, and finally, an offset field (from the file table) to indicate the byte offset
into the file where the 1/0 should begin. After the kernel sets the /0O parameters
in the u area, it follows the pointer from the file table entry to the incde, locking
the inode before it reads the file.

The algorithm now goes into a loop until the read is satisfied. The kernel
converts the file byte offset into a block number, using algorithm bmap, and it
notes the byte offset in the block where the 170 should begin and how many bytes

98 SYSTEM CALLS FOR THE FILE SYSTEM

mode indicates read or write

count count of bytes to read or write

ofiset byte offset in file

address target address to copy data, in user or kernel memory
flag indicates if address is in user or kernel memory

Figure 5.6. I/O Parameters Saved in U Area

in the block it should read. After reading the block into a buffer, possibly using
block read ahead (algorithms bread and breada) as will be described, it copies the
data from the block to the target address in the user process. It updates the 1/0
parameters in the u area according to the number of bytes it read, incrementing the
file byte offset and the address in the user process where the next data should be
delivered, and decrementing the count of bytes it needs to read to satisfy the user
read request. If the user request is not satisfied, the kernel repeats the entire cycle,
converting the file byte offset to a block number, reading the block from disk to a
system buff'er, copying data from the buffer to the user process, releasing the buffer,
and updating I/O parameters in the u area. The cycle completes either when the
kernel completely satisfies the user request, when the file contains no more data, or
if the kernel encounters an error in reading the data from disk or in copying the
data to user space. The kernel updates the offset in the file table according to the
number of bytes it actually read; consequently, successive reads of a file deliver the
file data in sequence. The Iseek system call (Section 5.6) adjusts the value of the
file table offset and changes the order in which a process reads or writes a file.

#include <fcntl.h>
main()
{
int fd;
char lilbufl20), bigbufl 1024);

fd = open(““/etc/passwd”, O_RDONLY);
read (fd, lilbuf, 20);
read(fd, bighuf, 1024);

: read(fd, lilbuf, 20);

Figure 5.7. Sample Program for Reading a File

Consider the program in Figure S.7. The open returns a file descriptor that the
user assigns to the variable fd and uses in the subsequent read calls. In the read
system call, the kernel verifies that the file descriptor parameter is legal, and that

52 READ 99

the process had previously opened the file for reading. It stores the values lilbuf.
20, and O in the u area, corresponding to the address of the user buffer, the byte
count, and the starting byte ofi'set in the file. It calculates that byte offset O is in
the Oth block of the file and retrieves the entry for the Oth block in the inode.
Assuming such a block exists, the kernel reads the entire block of 1024 bytes into a
bufi'er but copies only 20 bytes to the user address lifbuf. It increments the u area
byte offset to 20 and decrements the count of data to read to 0. Since the read has
been satisfied, the kernel resets the file table ofi'set to 20, so that subsequent reads
on the file descriptor will begin at byte 20 in the file, and the system call returns
the number of bytes actually read, 20.

For the second read call, the kernel again verifies that the descriptor is legal
and that the process had opened the file for reading, because it has no way of
knowing that the user read request is for the same file that was determined to be
legal during the last read. It stores in the w area the user address bigbuf, the
number of bytes the process wants to read, 1024, and the starting ofi'set in the file,
20, taken from the file table. It converts the file byte ofi'set to the correct disk
block, as above, and reads the block. If the time between read calls is small,
chances are good that the block will be in the bufier cache. But the kernel cannot
satisfy the read request entirely from the bufier, because only 1004 out of the 1024
bytes for this request are in the bufier. So it copies the last 1004 bytes from the
buffer into the user data structure bigbuf and updates the parameters in the v area
to indicate that the next iteration of the read loop starts at byte 1024 in the file,
that the data should be copied to byte position 1004 in bigbuf, and that the number
of bytes to to satisfy the read request is 20.

The kernel now cycles to the beginning of the loop in the read algorithm. It
converts byte ofiset 1024 to logical block offset 1. looks up the second direct block
number in the inode, and finds the correct disk block to read. It reads the block
from the bufier cache, reading the block from disk if it is not in the cache. Finally,
it copies 20 bytes from the bufier to the correct address in the user process. Before
leaving the system call, the kernel sets the offset field in the file table entry to 1044,
the byte ofi'set that should be accessed next. For the last read call in the example,
the kernel proceeds as in the first read call, except that it starts reading at byte
1044 in the file, finding that value in the ofiset field in the file table entry for the
descriptor.

The example shows how advantageous it is for I/O requests to start on file
system block boundaries and to be multiples of the block size. Doing so allows the
kernel to avoid an extra iteration in the read algorithm loop, with the consequent
expense of accessing the inode to find the correct block number for the data and
competing with other processes for access to the bufier pool. The standard 1I/0
library was written to hide knowledge of the kernel bufier size from users; its use
avoids the performance penalties inherent in processes that nibble at the file system
inefficiently (see exercise 5.4).

As the kernel goes through the read loop, it determines whether a file is subject
to read-ahead: if a process reads two blocks sequentially, the kernel assumes that

160 SYSTEM CALLS FOR THE FILE SYSTEM

all subsequent reads will be sequential until proven otherwise. During each
iteration through the loop, the kernel saves the next logical block number in the in-
core inode and, during the next iteration, compares the current logical block
number to the value previously saved. If they are equal, the kernel calculates the
physical block number for read-ahead and saves its value in the u area for use in
the breada algorithm. Of course, if a process does not read tothe end of a block,
the kernel does not invoke read-ahead for the next block.

Recall from Figure 4.9 that it is possible for some block numbers in an inode or
in indirect blocks to have the value 0, even though later blocks have nonzero value.
If a process attempts to read data from such a block, the kernel satisfies the request
by allocating an arbitrary buffer in the read loop, clearing its contents to 0, and
copying it to the user address. This case is different from the case where a process
encounters the end of a file, meaning that no data was ever written to any location
beyond the current point. When encountering end of file, the kernel returns no
data to the process (see exercise 5.1).

When a process invokes the read system call, the kernel locks the inode for the
duration of the call. Afterwards, it could go to sleep reading a buffer associated
with data or with indirect blocks of the inode. If another process were allowed to
change the file while the first process was sleeping, read could return inconsistent
data. For example, a process may read several blocks of a file; if it slept while
reading the first block and a second pcecess were to write the other blocks, the
returned data would contain a mixture of old and new data. Hence, the inode is
left locked for the duration of the read call, affording the process a consistent view
of the file as it existed at the start of the call.

The kernel can preempt a reading process between system calls in user mode
and schedule other processes to run. Since the inode is unlocked at the end of a
system call, nothing prevents other processes from accessing the file and changing
its contents. [t would be unfair for the system to keep an inode locked from the
time a process opened the file until it closed the file, because one process could
keep a file open and thus prevent other processes from ever accessing it. If the file
was “/etc/passwd”, used by the login process to check a user’s password, then one
malicious (or, perhaps, just errant) user could prevent all other users from logging
in. To avoid such problems, the kernel unlocks the inode at the end of each system
call that uses it. If another process changes the file between the two read system
calls by the first process, the first process may read unexpected data, but the kernel
data structures are consistent.

For example, suppose the kernel executes the two processes in Figure 5.8
concurrently. Assuming both processes complete their open calls before either one
starts its read or write calls, the kernel could execute the read and write calls in
any of six sequences: read!, read2, writel, write2, or readl, writel, read2, write2,
or readl, writel, write2, read2, and so on. The data that process A reads depends
on the order that the system executes the system calls of the two processes; the
system does not guarantee that the data in the file remains the same after opening
the file. Use of the file and record locking feature (Section 5.4) allows a process to

5.2 READ 101

#include <fentlh>
/* process A */
main()
{
int fd;
char bufl512];
fd = open(“/etc/passwd”, O_RDONLY);
read(fd, buf, sizeof (buf)); /* readl */
read(fd, buf, sizeof (buf)); /* read2 */
}

/* process B */
EnainO
int fd, i;
char buf{s12};
for (i=0; i < sizeof(buf); i++)
buftil = ’a”;
fd = open(*“/etc/passwd”, O_WRONLY);
write(fd, buf, sizeof(buf)); /* writel */ |
write(fd, Luf, sizeof(buf)); /* writc2 */

Figure 5.8. A Reader and a Writer Process

guarantee file consistency while it has a file open.

Finally, the program in Figure 5.9 shows how a process can open a file more
than once and read it via different file descriptors. The kernel manipulates the file
table offsets associated with the two file descriptors independently, and hence, the
arrays bufl and buf2 should be identical when the process completes, assuming no
other process writes *‘/etc/passwd” in the meantime.

5.3 WRITE
The syntax for the write system call is
number = write(fd, buffer, count);

where the meaning of the variables fd, buffer, count, and number are the same as
they are for the read system call. The algorithm for writing a regular file is similar
to that for reading a regular file. However, if the file does not contain a block that
corresponds to the byte off'set to be written, the keenel allocates a new block using
algorithm alloc and assigns the block number to the correct position in the inode’s
table of contents. If the byte offset is that of an indirect block, the kernel may

102 SYSTEM CALLS FOR THE FILE SYSTEM

#include <fentlh>
main()
{
int fdi, fd2;
char buft[512], buf2[512});

fdt = open(**/etc/passwd”, O_RDONLY);
fd2 = open(*/etc/passwd”, O RDONLY);
read(fdt, bufl, sizeof(bufl));
read (fd2, buf2, sizeof (buf2));

Figure 5.9. Reading a File via Two File Descriptors

have to allocate several blocks for use as indirect blocks and data blocks. The
inode is locked for the duration of the write, because the kernel may change the
inode when allocating new blocks; allowing other processes access to the file could
corrupt the inode if several processes allocate blocks simultaneously for the same
byte offsets. When the write is complete, the kernel updates the file size entry in
the inode if the file has grown larger.

For example, suppose a process writes byte number 10,240 to a file, the
highest-numbered byte yet written to the file. When accessing the byte in the file
using algorithm bmap, the kernel will find not only that the file does not contain a
block for that byte but also that it does not contain the necessary indirect block. It
assigns a disk block for the indirect block and writes the block number in the in-
core inode. Then it assigns a disk block for the data block and writes its block
number into the first position in the newly assigned indirect block.

The kernel goes through an internal loop, as in the read algorithm, writing one
block to disk during each iteration. During each iteration, it determines whether it
will write the entire block or only part of it. If it writes only part of a block, it
must first read the block from disk so as not to overwrite the parts that will remain
the same, but if it writes the whole block, it need not read the block, since it will
overwrite its previous contents anyway. The write proceeds block by block, but the
kernel uses a delayed write (Section 3.4) to write the data to disk, caching it in
case another process should read or write it soon and avoiding extra disk operations.
Delayed write is probably most effective for pipes, because another process is
reading the pipe and removing its data (Section 5.12). But even for regular files,
delayed write is effective if the file is created temporarily and will be read soon.
For example, many programs, such as editors and mail, create temporary files in
the directory “/tmp™ and quickly remove them. Use of delayed write can reduce

53 WRITE 103

the number of disk writes for temporary files.

5.4 FILE AND RECORD LOCKING

The original UNIX system developed by Thompson and Ritchie did not have an
internal mechanism by which a process could insure exclusive access to a file. A
locking mechanism was considered unnecessary because, as Ritchie notes, “we are
not faced with large, single-file databases maintained by independent processes”
(see [Ritchie 811). To make the UNIX system more attractive to commercial users
with database applications, System V now contains file and record locking
mechanisms. File locking is the capability to prevent other processes from reading
or writing any part of an entire file, and record locking is the capability to prevent
other processes from reading or writing particular records (parts of a file between

particular byte offsets). Exercise 5.9 explores the implementation of file and record
locking.

5.5 ADJUSTING THE POSITION OF FILE 1/0 — LSEEK

The ordinary use of read and write system calls provides sequential access to a file,
but processes can use the /seek system call to position the 1/0 and allow random
access to a file. The syntax for the system call is

position = Iseek(fd, offset, reference);

where fd is the file descriptor identifying the file, offset is a byte offset, and
reference indicates whether offset should be considered from the beginning of the
file, from the current position of the read/write offset, or from the end of the file.
The return value, position, is the byte offset where the next read or write will start.
In the program in Figure 5.10, for example, a process opens a file, reads a byte,
then invokes /seek to advance the file table offset value by 1023 (with reference 1),
and loops. Thus, the program reads every 1024th byte of the file. 1f the value of
reference is O, the kernel seeks from the beginning of the file, and if its value is 2,
the kernel seeks beyond the end of the file. The /seek system call has nothing to do
with the seek operation that positions a disk arm over a particular disk sector. To
implement Iseek, the kernel simply adjusts the offset value in the file table;

subsequent read or write system calls use the file table offset as their starting byte
offset.

5.6 CLOSE

A process closes an open file when it no longer wants to access it. The syntax for
the close system call is

104 SYSTEM CALLS FOR THE FILE SYSTEM

#include <fentl.h>
main(argc, argv)

int argc;

char *argvl};

int fd, skval;
char ¢;

if (argc!=2)
exit();
fd = open(argvi1], O_RDONLY);
if (fd === —1)
exitQ:
while ((skval = read(fd, &c, 1)) ==1)
(
printf(“char %c\n”, c);
skval = Iseek(fd, 1023L, 1);
printf(*new seek val %d\n”, skval);

}

Figure 5.10. Program with Lseek System Call

close(fd);

where fd is the file descriptor for the open file. The kernel does the close operation
by manipulating the file descriptor and the corresponding file table and inode table
entries. If the reference count of the file table entry is greater than 1 because of
dup or fork calls, then other user file descriptors reference the file table entry, as
will be seen; the kernel decrements the count and the close completes. If the file
table reference count is 1, the kernel frees the entry and releases the in-core inode
originally allocated in the open system call (algorithm iput). If other processes still
reference the inode, the kernel decrements the inode reference count but leaves it
allocated; otherwise, the inode is free for reallocation because its reference count is
0. When the close system call completes, the user file descriptor table entry is
empty. Attempts by the process to use that file descriptor result in an error until
the file descriptor is reassigned as a result of another system call. When a process
exits, the kernel examines its active user file descriptors and internally closes each
one. Hence, no process can keep a file open after it terminates.

For example, Figure 5.11 shows the relevant table entries of Figure 5.4, after
the second process closes its files. The entries for file descriptors 3 and 4 in the
user file descriptor table are empty. The count fields of the file table entries are
now 0, and the entries are empty. The inode reference count for the files
“/etc/passwd” and “private” are also decremented. The inode entry for “private”
is on the free list because its reference count is O, but its entry is not empty. If

5.6 CLOSE

user file descriptors file table inode table
0
1
2
3
¥ A\ : coum(/etc/ d
: passwd)
5 : t\ T] / 2
’ 1
0
1
- count 9
3[NULL .
4] NULL
: O (local)
count
0 :
ey ‘
count / et .
1 0 (private)
oount
0

Figure 5.11, Tables after Closing a File

105

another process accesses the file “private™ while the inode is still on the free [fist,
the kernel will reclaim the inode, as explained in Section 4.1.2.

5.7 FILE CREATION

The open system call gives a process access to an existing file, but the creat system
call creates a new file in the system. The syntax for the creat system call is

fd = creat(pathname, modes);

106 SYSTEM CALLS FOR THE FILE SYSTEM

where the variables pathname, modes, and fd mean the same as they do in the
open system call. ¥ no such file previously existed, the kernel creates a new file
with the specified name and permission modes; if the file alieady existed, the kernel
truncates the file (releases all existing data blocks and sets the file size to 0) subject
to suitable file access permissions.’ Figure 5.12 shows the algorithm for file
creation.

algorithm creat
input: file name
permission settings
output: file descriptor
{
get inode for file name (algorithm namei);
if (file already exists)
{
if (not permitted access)
{
release inode (algorithm iput);
return(error);

}
clse /* file does not exist yet */
(
assign free inode from file system (algorithm ialloc);
create new directory entry in parent directory: include
new file name and newly assigned inode number;
}
allocate file table entry for inode, initialize count;
if (file did exist at time of create)
free all file blocks (algorithm free);
unlock(inode);
return(user file descriptor);

Figure 5.12. Algorithm for Creating a File

The kernel parses the path name using algorithm namei, following the
algorithm literally while parsing directory names. However, when it arrtves at the
last component of the path name, namely, the file name that it will create, namei

3. The open system call specifies two Rags, O CREAT (create) and O_TRUNC (truncate): 1f a process
specifies the O_CREAT flag on an open and the file does not exist, the kernel will create the fle. If
the file already exists, it will not be truncated unless the O TRUNC fiag is also set.

5.3 FILE CREATION 107

notes the byte offset of the first empty directory slot in the directory and saves the
offset in the u area. If the kernel does not find the path name component in the
directory, it will eventually write the name into the empty slot just found. If the
directory has no empty slots, the kernel remembers the offset of the end of the
directory and creates a new slot there. It also remembers the inode of the directory
being searched in its « area and keeps the inode locked; the directory will become
the parent directory of the new file. The kernel does not write the new file name
into the directory yet, so that it has less to undo in event of later errors. It checks
that the directory allows the process write permission: Because a process will write
the directory as a result of the creat call, write permission for a directory means
that processes are allowed to create files in the directory.

Assuming no file by the given name previously existed, the kernel assigns an
inode for the new file, using algorithm ialloc (Section 4.6). It then writes the new
file name component and the inode number of the newly allocated inode in the
parent directory, at the byte offset saved in the u area. Afterwards, it releases the
inode of the parent directory, having held it from the time it searched the directory
for the file name. The parent directory now contains the name of the new file and
its inode number. The kernel writes the newly allocated inode to disk (algorithm
bwrite) before it writes the directory with the new name to disk. If the system
crashecs between the write operations for the inode and the directory, there will be
an allocated inode that is not referenced by any path name in the system but the
system will function normally. If, on the other hand, the directory were written
before the newly allocated inode and the system crashed in the middle, the file
system would contain a path name that referred to a bad inode. (See Section
5.16.1 for more detail.)

If the given file already existed before the creat, the kernel finds its inode while
searching for the file name. The old file must allow write permission for a process
to create a “new” file by the same name, because the kernel changes the file
contents during the creat call: It truncates the file, freeing all its data blocks using
algorithm free, so that the file looks like a newly created file. However, the owner
and permission modes of the file are the same as they were for the original file:
The kernel does not reassign ownership to the owner of the process, and it ignores
the permission modes specified by the process. Finally, the kernel does not check
that the parent directory of the existing file allows write permission, because it will
not change the directory contents.

The creat system call proceeds according to the same algorithm as the open
system call. The kernel allocates an entry in the file table for the created file so
that the process can write the file, allocates an entry in the user file descriptor
table, and eventually returns the index to the latter entry as the user file descriptor.

5.8 CREATION OF SPECIAL FILES

The system call mknod creates special files in the system, including named pipes,
device files, and directories. It is similar to crear in that the kernel allocates an

108 SYSTEM CALLS FOR THE FILE SYSTEM

inode for the file. The syntax of the mknod system call is
mknod(pathname, type and permissions, dev)

where pathname is the name of the node to be created, type and permissions give
the node type (directory, for example) and access permissions for the new file to be
created, and dev specifies the major and minor device numbers for block and
character special files (Chapter 10). Figure 5.13 depicts the algorithm mknod for
making a new node.

algorithm make new node
inputs: node (file name)

file type

permissions

major, minor device number (for block, character special files)
output: none

if (new node not named pipe and user not sugper user)
return(error);
get inode of parent of new node (algorithm namei);
if (new node already exists)
{
release parent inode (algorithm iput);
return(error);
}
assign free inode from file system for new node (algorithm ialloc);
create new directory entty in parent directory: include new node
name and newly assigned inode number;
release parent directory inode (algorithm iput);
if (new node is block or character special file)
write major, minor numbers into inode structure;
release new node inode (algorithm iput); |

Figure 5.13. Algorithm for Making New Node

The kernel searches the file system for the file name it is about to create. If the
file does not yet exist, the kernel assigns a new inode on the disk and writes the cew
file name and inode number into the parent directory. It sets the file type field in
the inode to indicate that the file type is a pipe, directory or special file. Finally, if
the file is a character special or bleck special device file, it writes the major and
minor device numbers into the inode. If the mknod call is creating a directory
node, the node will exist after the system call completes but its contents will be in
the wrong format (there are no directory entries for *.” and *..”). Exercise 5.33
considers the other steps needed to put a directory into the correct format.

S8 CHANGE DIRECTORY AND CHANGE ROOT 109

algorithm change directory
input: new directory name
output: none
{
get inode for new directory name (algorithm named);
if (inode not that of directory or process not permitted access to file)
{
release inode (algorithm iput);
return (error);
}
unlock incde;
release "old" current directory inode (algorithm iput);
place new inode into current directory slot in u area;

Figure 5.14. Algorithm for Changing Current Directory

5.9 CHANGE DIRECTORY AND CHANGE ROOT

When the system is first booted, process 0 makes the tile system root its current
directory during initialization. It executes the algorithm iget on the root inode,
saves it in the u area as its current directory, and releases the inode lock. When a
new process is created via the fork system call. the new process inheri'ts the current
directory of the old process in its u area, and the kernel increments the inode
reference count accordingly.

The algorithm chdir (Figure 5.14) changes the current directory of a process.
The syntax for the chdir system call is

chdir(pathname):

where pathname is the directory that becomes the new current directory of the
process. The kernel parses the name of the target directory using algorithm namei
and checks that the target file is a directory and that the process owner has access
permission to the directory. It releases the lock to the new inode but keeps the
inode allocated and its reference count incremented, releases the inode of the old
current directory (algorithm ipur) stored in the u area, and stores the new inode in
the u area. After a process changes its current directory, algorithm namei uses the
inode for the start directory to search for all path names that do not begin from
root. After execution of the chdir system call, the inode reference count of the new
directory is at least one, and the inode reference count of the previous current
directory may be O. In this respect, chdir is similar to the open system call,
because both system calls access a file and leave i% inode allocated. The inode
allocated during the chdir system call is released only when the process executes
another chdir call or when it exits.

110 SYSTEM CALLS FOR THE FILE SYSTEM

A process usually uses the global file system root for all path names starting
with “/”. The kernel contains a global variable that points to the inode of the
global root, allocated by iget when the system is booted. Processes can change their
notion of the file system root via the chroot system call. This is useful if a user
wants to simulate the usual file system hierarchy and run processes there. l&
syntax is

chroot (pathname);

where pathname is the directory that the kernel subsequently treats as the process’s
root directory. When executing the chroot system call, the kernel follows the same
algorithm as for changing the current directory. It stores the new root inode in the
process u area, unlocking the inode on completion of the system call. However,
since the default root for the kernel is stored in a global variable, it does not release
the inode of the old root automatically, but only if it or an ancestor process had
executed the chroot system call. The new inode is now the logical root of the file
system for the process (and ali its chiidren), meaning that all path name searches
in algorithm namei that start from root (“/”) start from this inode, and that all
attempts to use **..” over the root will leave the working directory of the process in
the new root. A process bestows new child processes with its changed root, just as
it bestows them with its current directory.

5§.10 CHANGE OWNER AND CHANGE MODE

Changing the owner or mode (access permissions) of a file are operations on the
inode, not on the file per se. The syntax of the calls is

chown(pathname, owner, group)
chmod(pathname, mode)

To change the owner of a file, the kernel converts the file name to an inode using
algorithm namei. The process owner must be superuser or match that of the file
owner (a process cannot give away something that does not belong to it). The
kernel then assigns the new owner and group to the file, clears the set user and set
group flags (see Section 7.5), and releases the inode via algorithm iput. After the
change of ownership, the old owner loses “owner™ access rights to the file. To
change the mode of a file, the kernel follows a similar procedure, changing the
mode fiags in the inode instead of the owner numbers.

§.11 STAT AND FSTAT

The system calls stat and fstat allow processes to query the status of files, returning
information such as the file type, file owner, access permissions, file size, number of
links, inode number, and file access times. The syntax for the system calls is

511 Stat and Fstat 111

stat(pathname, statbuffer);
fstat(fd, statbuffer);

where pathname is a file name, fd is a file descriptor returned by a previous open
call, and statbufjer is the address of a data structure in the user process that will
contain the status information of the file on completion of the call. The system
calls simply write the fields of the inode into stzatbuffer. The program in Figure
5.33 will illustrate the use of star and fszat.

ae
.

Calls pipe Cannot share pipe

Proc A
Proc B Proc C

Proc D : Proc E

- .
. A\
.

Share pipe

Figure S.15. Process Tree and Sharing Pipes

5.12 PIPES

Pipes allow transfer of data between processes in a first-in-first-out manner (F/FO),
and they also allow synchronization of process execution. Their implementation
allows processes to communicate even though they do not know what processes are
on the other end of the pipe. The traditional implementation of pipes uses the file
system for data storage. There are two kinds of pipes: named pipes and, for lack
of a better term, unnamed pipes, which are identical except for the way that a
process initially accesses them. Processes use the open system call for named pipes,
but the pipe system call to create an unnamed pipe. Afterwards, processes use the
regular system calls for files, such as read, write, and close when manipulating
pipes. @nly related proaesses, descendants of a process that issued the pipe call,
can share access to unnamed pipes. In Figure 5.15 for example, if process B
creates a pipe and then spawns processes D and E, the three processes share access
to the pipe, but processes A and C do not. However, all processes can access a
named pipe regardless of their relationship, subject to the usual file permissions.

112 SYSTEM CALLS FOR THE FILE SYSTEM

Because unnamed pipes are more common, they will be presented first.

5.12.1 The Pipe System Call
The syntax for creation of a pipe is
pipe(fdptr);

where fdptr is the pointer to an integer array that will contain the two file
descriptors for reading and writing the pipe. Because the kernel implements pipes
in the file system and because a pipe does not exist before its use, the kernel must
assign an inode for it on creation. It also allocates a pair of user file descriptors
and corresponding file table entries for the pipe: one file descriptor for reading
from the pipe and the other for writing to the pipe. It uses the file table so that the
interface for the read, write and other system calls is consistent with the interface
for regular files. As a result, processes do not have to know whether they are
reading or writing a regular file or a pipe.

algorithm pipe

input: none

output: read file descriptor
write file descriptor

{

assign new inode from pipe device (algorithm ialloc);

allocate file table entry for reading, another for writing:

initialize file table entries to point to new inode;

allocate user file descriptor far reading, another far writ'ing,
initialize to point to respective file table entries;

set inode reference count to2;

initialize count of inode readers, write:s to 1;

Figwre 5.16. Algorithm for Creation of (Unnamed) Pipes

Figure 5.16 shows the algorithm for creating unnamed pipes. The kernel
assigns an inode for a pipe from a file system designated the pipe device using
algorithm ialloc. A pipe device is just a file system from which the kernel can
assign inodes and data blocks for pipes. System administrators specify a pipe
device during system configuration, and it may be identical to another file system.
While a pipe is active, the kernel cannot reassign the pipe inode and data blocks to
another file.

The kernel then allocates two file table entries for the read and write
descriptors, respectively, and updates the bookkeeping information in the in-core
inode. Each file table entry records how many instances of the pipe are open for
reading or writing, initially 1 for each file table entry, and the inode reference

5.12 PIPES 113

count indicates how many times the pipe was “opened,” initially two — onc for
each file table entry. Finally, the inode records byte off'sets in the pipe where the
next read or write of the pipe will start. Maintaining the byte off'sets in the inode
allows convenient FIFO access to the pipe data and differs from regular files where
the offset is maintained in the file table. Processes cannot adjust them via the /seek
system call and so random access I/O to a pipe is not possible.

5.12.2 Opening a Named Pipe

A named pipe is a file whose semantics are the same as those of an unnamed pipe,
except that it has a directory entry and is accessed by a path name. Processes open
named pipes in the same way that they open regular files and, hence, processes that
are not closely related can communicate. INamed pipes permanently exist in the file
system hierarchy (subject to their removal by the unlink system call), but unnamed
pipes are transient: When all processes finish using the pipe, the kernel reclaims its
inode.

The algorithm for opening a named pipe is identical to the algorithm for
opening a regular fle. However, before completing the system call, the kernel
increments the read or write counts in the inode, indicating the number of processes
that have the named pipe open for reading or writing. A process that opens the
named pipe for reading will sleep until another process opens the named pipe for
writing, and vice versa. It makes no sense for a pipe to be open for reading if there
is no hope for it to receive data, the same is true for writing. Depending on
whether the process operns the named pipe for reading or writing, the kernel
awakens other processes that were asleep, waiting for a writer or reader process
(respectively) on the named pipe.

If a process opens a named pipe for reading and a writing process exists, the
open call completes. Or if a process opens a named pipe with the no delay option,
the open returns immediately, even if there are no writing processes. But if neither
condition is true, the process sleeps until a writer process opens the pipe. Similar
rules hold for a process that opens a pipe for writing.

5.12.3 Reading and Writyng Plpes

A pipe should be viewed as if processes write into one end of the pipe and read
from the other end. As mentioned above, processes access data from a pipe in
FIFO manner, meaning that the order that data is written into a pipe is the order
that it is read from the pipe. The number of processes reading from a pipe do not
necessarily squal the number of processes writing the pipe; if the number of readers
or writers iS greater than I, they must coordinate use of the pipe with other
mechanisms. The kernel accesses the data for a pipe exactly as it accesses data for
a regular file: It stores data on the pipe device and assigns blocks to the pipe as
needed during write calls. The difference between storage allocation for a pipe and

114 SYSTEM CALLS FOR THE FILE SYSTEM

Read Pointer | Writer Pointer
N /

0 | 2-1 9 4 516 |7 |8)
irect Blocks of Inode

Figure 5.17. Logical View of Reading and Writing a Pipe

a regular file is that a pipe uses only the direct blocks of the inode for greater
efficiency, although this places a limit on how much data a pipe can hold at a time.
The kernel manipulates the direct blocks of the inode as a circular queue,
maintaining read and write pointers internally to preserve the FIFO order (Figure
5.17).

Consider four cases for reading and writing pipes: writing a pipe that has room
for the data being written, reading from a pipe that contains enough data to satisfy
the read, reading from a pipe that does not contain enough data to satisfy the
read, and finally, writing a pipe that does not have room for the data being written.

Consider first the case that a process is writing a pipe and assume that the pipe
has room for the data being written; The sum of the number of bytes being written
and the number of bytes already in the pipe is less than or equal to the pipe’s
capacity. The kernel follows the algorithm for writing a regular file, except that it
increments the pipe size automatically after every write, since by definition the
amount of data in the pipe grows with every write. This differs from the growth of
a regular file where the process increments the file size only when it wrifes data
beyond the current end of file. If the next byte offset in the pipe were to require
use of an indirect block, the kernel adjusts the file off'set value in the u area to
point to the beginning of the pipe (byte offset 0). The kernel never overwrites data
in the pipe; it can reset the byte offset to O because it has already determined that
the data will not overflow the pipe’s capacity. When the writer process has written
all its data into the pipe, the kernel updates the pipe's (inode) write pointer so that
the next process to write the pipe will proceed from where the last write stopped.
The kernel then awakens all other processes that fell asleep waiting to read data
from the pipe.

When a process reads a pipe, it checks if the pipe is empty or not. If the pipe
contains data, the kernel reads the data from the pipe as if the pipe were a regular
file, following the regular algorithm for read. However, its initial off'set is the pipe

5.12 PIPES 118

read pointer stored in the inode, indicating the extent of the previous read. After
reading each block, the kernel decrements the size of the pipe according to the
number of bytes it read, and it adjusts the u area offset value to wrap around to the
beginning of the pipe, if necessary. When the read system call completes, the
kernel awakens all sleeping writer processes and saves the current read offset in the
inode (not in the file table entry).

If a process attempts to read more data than is in the pipe, the read will
complete successfully after returning all data currently in the pipe, even though it
does not satisfy the user count. If the pipe is empty, the process will typically sleep
until another process writes data into the pipe, at which time all sleeping processes
that were waiting for data wake up and race to read the pipe. If, however, a
process opens a named pipe with the no delay option, it will return immediately
from a read if the pipe contains no data. The semantics of reading and writing
pipes are similar to the semantics of reading and writing terminal devices (Chapter
10), allowing programs to ignore the type of file they are dealing with.

If a process writes a pipe and the pipe cannot hold all the data, the kernel
marks the inode and goes to sleep waiting for data to drain from the pipe. When
another process subsequently reads from the pipe, the kernel will notice that
processes are asleep waiting for data to drain from the pipe, and it will awaken
them, as explaincd abovc. The cxccption to this statcment is when a proccss writes
an amount of data greater than the pipe capacity (that is, the amount of data that
can be stored in the inode direct blocks); here, the kernel writes as much data as
possible to the pipe and puts the process to sleep until more room becomes
available. Thus, it is possible that written data will not be contiguous in the pipe if
other processes write their data to the pipe before this process resumes its write.

Analyzing the implementation of pipes, the process interface is consistent with
that of regular files, but the implementation differs because the kernel stores the
read and write offsets in the inode instead of in the file table. The kernel must
store the offsets in the inode for named pipes so that processes can share their
values: They cannot share values stored in file table entries because a process gets
a new file table entry for each open call. However, the sharing of read and write
offsets in the inode predates the implementation of named pipes. Processes with
access to unnamed pipes share access to the pipe through common file table entries,
so they could conceivably store the read and write offsets in the file table entry, as
is done for regular files. This was not done, because the low-level routines in the
kernel no longer have access to the file table entry: The code is simpler because the
processes share off sets stored in the inode.

5.12.4 Qlosing Pipes

When closing a pipe, a process follows the same precedure t would follow for
closing a regular file, except that the kernel does special processing before releasing
the pipe’s inode. The kernel decrements the number of pipe readers or writers,
according to the type of the file descriptor. If the count of writer processes drops to

116 SYSTEM CALLS FOR THE FILE SYSTEM

0 and there are processes asleep waiting to read data from the pipe, the kernel
awakens them, and they return from their read calls without reading any data. If
the count of reader processes drops to O and there are processes asleep waiting to
write data to the pipe, the kernel awakens them and sends them a signal (Chapter
7) to indicate an error condition. In both cases, it makes no sense to allow the
processes to continue sleeping when there is no hope that the state of the pipe will
ever change. For example, if a process is waiting to read an unnamed pipe and
there are no more writer processes, there will never be a writer process. Although
it is possible to get new reader or writer processes for named pipes, the kemel
treats them consistently with unnamed pipes. If no reader or writer processes
access the pipe, the kernel frees all its data blocks and adjusts the inode to indicate
that the pipe is empty. When it releases the inode of an ordinary pipe, it frees the
disk copy for reassignment.

char stringf] = “hello™;

main()

{
char bufl1024];
char *cpl, *cp2;
int Fds[2];

cpl = string;
cp2 = buf;
while (*cp1)
*cp2t++ = *cpl++;
pipe(fds);
for ()
{
write(fds{ 1], buf, 6);
read(fds[0], buf, 6);

Figure 5.18. Reading and Writing a Pipe

§5.12.S Examples

The program in Figure 5.18 illustrates an artificial use of pipes. The process
creates a pipe and goes into an infinite loop, writing the string “hello” to the pipe
and reading it from the pipe. The kernel does not know nor does it care that the
process that writes the pipe is the same process that reads the pipe.

A process executing the program in Figure 5.19 creates a named pipe node
called “fifo™". If invoked with a second (dummy) argument, it continually writes

5.12 PIPES 117

#include <fcntlh>
char string[) = *hello™;
main(argc, argy)

It argc;

char *argyl};

int £d;
char bufl256);

/* create named pipe with read/write permission for all users */
mknod(“fifo”, 010777, 0);
if (argc == 2)
fd = open(“fifo”, O_WRONLY});
clse
fd = open(“fifo*, O_RDONLY),
far ;)
if (argc == 2)
write(fd, string, 6);
else
read(fd, buf, 6);

Figure 5.19. Reading and Writing a Named Pipe

the string *“hello™ into the pipe; if invoked without a second argument, it reads the
named pipe. The two processes are invocations of the identical program and have
secretly agreed to communicate through the named pipe “fifo”, but they nead not
be related. Other users could execute the program and participate in (or interfere
with) the conversation.

5.13 DUP

The dup system call copies a file descriptor into the first free slot of the user file
descriptor table, returning the new file descriptor to the user. It works for all file
types. The syntax of the system call is

newfd = dup(fd);

where fd is the file descriptor being duped and newfd is the new fle descriptor that
references the file. Because dup duplicates the file descriptor, it increments the
count of the corresponding file table entry, which now has one more file descriptor
entry that points to it. For example, examination of the data structures depicted in
Figure 5.20 indicates that the process did the following sequence of system calls: It
opened the file “/etc/passwd™ (file descriptor 3), then opened the file “local” (file
descriptor 4), opened the file “/etc/passwd™ again (file descriptor 5), and finally,

118 SYSTEM CALLS FOR THE FILE SYSTEM

user file
descriptor table file table inode table
0 R S | .
] — .
2 = D1 : :
3 : .
4 \ : count(/ :
etc/passwd|
7 \ :
count
1 é
Mt Gocal)
count]
1"~ /

Figure 5.20. Data Structures after Dup

duped file descriptor 3, returning file descriptor 6.

Dup is perhaps an inelegant system call, because it assumes that the user knows
that the system will return the lowest-numbered frec entry in the user file
descriptor table. However, it serves an important purpose in building sophisticated
programs from simpler, building-block programs, as exemplified in the construction
of shell pipelines (Chapter 7).

Consider the program in Figure 5.2). The variable i contains the file descriptor
that the system returns as a result of opening the file “etc/passwd,” and the
variable j contains the file descriptor that the system returns as a result of duping
the file descriptor i. In the » area of the process, the two user file descriptor
entries represented by the user variables i and j point to one file table entry and
therefore use the same file offset. The first two reads in the process thus read the
data in sequence, and the two buffers, buf? and bu f2, do not contain the same data.

5.13 DUP 119

#include <fcntl.h>

main()

{
int i, j;

char tuf1{512], buf2f512);

i = open(“/etc/passwd”, O RDONLY);
3 = dupfi):

read(j, bufl. sizeof(bufl));

read(j, buf?2, sizeof(buf?2));

close(i),

read(j, buf2, sizeof(buf2));

}

Figure 5.21. C Program Illustrating Dup

This differs from the case where a process opens the same file twice and reads the
same data twice (Section 5.2). A process can close either file descriptor if it wants,
but 1/0 continues normally on the other file descriptor, as illustrated in the
example. In particular, a process can close its standard output file descriptor (file
descriptor 1), dup another file descriptor so that it becomes file descriptor 1, then
treat the file as its standard output. Chapter 7 presents a more realistic example of
the use of pipe and dup when it describes the implementation of the shell.

5.14 MOUNTING AND UNMOUNTING FULE SYSTEMS

A physical disk unit consists of several logical sections, partitioned by the disk
driver, and each section has a device file name. Processes can access data in a
section by opening the appropriate device file name and then reading and writing
the “file,” treating it as a sequence of disk blocks. Chapter 10 gives details on this
interface. A section of a disk may contain a logical file system, consisting of a boot
block, super block, inode list, and data blocks, as described in Chapter 2. The
mount system call connects the file system in a specified section of a disk to the
existing file system hierarchy, and the umount system call disconnects a file system
from the hierarchy. The mount system call thus allows users to acoess data in a
disk section as a file system instead of a sequence of disk blocks.
The syntax for the mowunt system call is

mount(special pathname, directory pathname, options);

where special pathname is the name of the device special file of the disk scction
containing the file system to be mounted, directory pathname is the directory in the
existing hierarchy where the file system will be mounted (called the mount point),
and options indicate whether the file system should be mounted ‘“read-only”

120 SYSTEM CAIL1S FOR THE FILE SYSTEM

Root File System

=
-
=3
o
-
(g}
e
1]
-

o e) S = 4
(e e T T mel BT A e n
| |
I |
| I
| |
‘ bin include src | Fl-cllevS/dskl
' | | ! File System
| |
i awk banner yacc stdioh uts |
(LA S AR S S R S J

Figure 5.22. File System Tree Before and After Mount

(system calls such as write and creat that write the file system will fail). For
example, if a process issues the system call

mount(*‘/dev/dskl”, “/usr”, 0);

the kernel attaches the file system contained in the portion of the disk called
*“/dev/dskl” to directory “/usr” in the existing file system tree (see Figure 5.22).
The file “/dev/dskl” is a block special file, meaning that it is the name of a block
device, typically a portion of a disk. The kernel assumes that the indicated portion
of the disk contains a file system with a super block, inode list, and root inode.
After completion of the mount system call, the root of the mounted file system is
accessed by the name “/usr”. Processes can access files on the mounted file system
and ignore the fact that it is detachable. Only the link system call checks the file
system of a file, because System V does not allow file links to span multiple file
systems (see Section 5.15).

The kernel has a mount table with entries for every mounted file system. Each
mount table entry contains

e a device number that identifies the mounted file system (this is the logical file
system number mentioned previously);

e a pointer to a buffer containing the file system super block;

e a pointer to the root inode of the mounted file system (““/” of the “/dev/dsk1”
file system in Figure 5.22);

e a pointer to the inode of the directory that is the mount point (“‘usr” of the root
file system in Figure 5.22).

5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS 121

Association of the mount point inode and the root incde of the mounted file system,
set up during the mount system call, allows the kernel to traverse the file system
hierarchy gracefully, without special user knowledge.

algorithm mount
inputs: file name of block special file
directory name of mount point
options (read only)
i)utput: none
if (not super user)
return{error);
get inode for block special file {algorithm namei);
make legality checks;
get inode for “mounted on” directory name (algorithm namei);
if (not directory, or reference count > 1)
{
release inodes (algorithm iput);
return(error);
)
find empty slot in mount table;
invoke block device driver open routine;
get free buffer from buffer cache;
read super block into free tuffer;
initialize super block fields;
get roat inode of mounted device (algorithm iget), save in mount table;
mark inode of “mounted on™ directory as mount point;
release special file inode (algozithm iput);
unlock inode of mount paint directory;

Figure 5.23. Algorithm for Mounting a File System

Figure 5.23 depicts the algorithm for mounting a file system. The kernel only
allows processes owned by a superuser to mount or umount file systems. Yielding
permission for mount and umount to the entire user community would allow
malicious {or not so malicrous) users to wreak havoc on the file system. Super-
users should wreak havoc only by accident.

The kernel finds the inode of the special file that represents the file system to be
mounted, extracts the major and minor numbers that identify the appropriate disk
section, and finds the inode of the directory on which the file system will be
mounted. The reference count of the directory inode must not be greater than 1 (it
must be at least | — why?), because of potentially dangerous side effects (see
exercise 5.27). The kernel then allocates a free slot in the mount table, marks the
slot in use, and assigns the device number field in the mount table. The above

122 SYSTEM CALLS FOR THE FILE SYSTEM

assignments are done immediately because the calling process could go to sleep in
the ensuing device open procedure or in reading the file system super block, and
another process could attempt to mount a file system. By having marked the
mount table entry in use, the kernel prevents two mounts from using the same
entry. By noting the dewce number of the attempted mount, the kermel can
prevent other processes from mounting the same file system ageain, because strange
things could happen if a double mount were allowed (see exercise 5.26).

The kermel calls the open procedure for the block device containing the file
system in the same way it invokes the procedure when opening the block device
directly (Chapter 10). The device open procedure typically checks that the device
is legal, sometimes initializing driver data structures and sending initialization
commands to the hardware. The kernel then allocates a free buffer from the buffer
pool (a variation of algorithm getblk) to hold the super block of the mounted file
system and reads the super block using a variation of algorithm read. The kernel
stores a pointer to the inode of the mounted-on directory of the original file tree to
allow file path names containing *“..” to traverse the mount point, as will be seen.
It finds the root inode of the mounted file system and stores a pointer to the inode
in the mount table. To the user, the mounted-on directory and the root of the
mounted file system are logically equivalent, and the kernel establishes their
equivalence by their coexistence in the mount table entry. Processes can no longer
access the inode of the mounted-on directory.

The kernel initializes fields in the file system super block, clearing the lock fields
for the free block list and free inode list and setting the number of free inodes in
the super block to 0. The purpose of the initializations is to minimize the danger of
file system corruption when mounting the file system after a system crash: Maling
the kernel think that there are no free inodes in the super block forces algorithm
ialloc to search the disk for free inodes. Unfortunately, if the linked list of free
disk blocks is corrupt, the kernel does not fix the list internally (see Section 5.17 for
file system maintenance). If the user mounts the file system read-only to disallow
all write operations to the file system, the kernel sets a flag in the super block.
Finally, the kermel marks the mounted-on inode as a mount point, so other
processes can later identify it. Figure 5.24 depicts the various data structures at
the conclusion of the mount call.

5.14.1 Crossing Mount Pbin in File Path Names

Let us reconsider algorithms namei and ige: for the cases where a path name
crosses a mount point. The two cases for crossing a mount point are: crossing
from the mounted-on file system to the mounted file system (in the direction from
the global system root towards a leaf node) and crossing from the mounted file
system to the mounted-on file system. The following sequence of shell commands
illustrates the two cases.

5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS 123

Inode Table Mount Table

Mounted on inode-.
Marked as mount pointjy
Reference cnt 1

/ Buffer

Super block <
Mounted on inode
, Root inode
Dewvice inode 4
Not in use
Reference cnt 0

Root inode of
mounted file system
Reference cnt 1

Figure 5.24. Data Structures after Mount

mount /dev/dskl /usr
cd /usr/src/uts
cd ./. /..

The mount command invokes the mount system call after doing some consistency
checks and mounts the file system in the disk section identified by “/dev/dsk]” onto
the directory “/usr”. The first cd (change directory) command causes the shell to
execute the chdir system call, and the kernel parses the path name, crossing the
mount point at “/usr”. The second cd command results in the kernel parsing the
path name and crossing the mount point at the third “..” in the path name.

For the case of crossing the mount point from the mounted-on file system to the
mounted file system, consider the revised algorithm for iget in Figure 5.25, which is
identical to that of Figure 4.3, except that it checks if the inode is a mount point:
If the inode is marked “mounted-on,” the kernel knows that it is a mount point. It
finds the mount table entry whose mounted-on inode is the one just accessed and
notes the device number of the mounted file system. Using the device number and
the inode number for root, which is common to all file systems, it then accesses the

124 SYSTEM CALLS FOR THE FILE SYSTEM

algorithm iget
input; file system inode number
output: locked inode

{

while (not done)

if {inode in inode cache)

if (inode locked)

{
sleep (event inode becomes unlocked):
continue; /* loop */

}

/* special prooessing for mount points———*%/

if (irode a mount point)
{
find mount table entry for mount point,;
get new file system number from mount table;
use root inode number in search;
) continue; /* loop again */
if (inode on inode free list)
remove from free list;
increment inode reference count;
return (inode);

}

/* inode not in inode cache */

remove new inode from free list;

reset inode number and file system;

remove inode from old hash queue, place on new one;
read inode from disk (algorithm bread);

initialize inode (e.g. reference count to 1);

return inode;

Figure 5.25. Revised Algorithm for Accessing an Inode

root inode of the mounted device and returns that inode. In the first change
directory example above, the kernel first accesses the inode for “/usr’ in the
mounted-on file system, finds that the inode is marked “mounted-on,” finds the root
inode of the mounted file system in the mount table, and accesses the root inode o
the mounted file system.

5.14 MOUNTING AND UNMOUNTING FILE SYSTEMS 125

algorithm namei /* convert path name to inode */
input: path name
output: locked inode
(
if (path name starts from roet)
working inode = root inode (algorithm iget);
else
working inode = current directory inode (algorithm iget);
while (there is more path name)
{
read next path name component from input;
verify that inode is of directory, permissions;
if (inode is of changed root and component is *..")
continue; /* loop */
component search:
read inode (directory) (algorithms bmap, bread, brelse);
if (component matches a directory entry)
{
get inode number for matched component;
if (found inode of root and working inode is root and
and component name is *..")
(

/* crossing mount point */
get mount table entry for working inode;
release working inode (algorithm iput);
working inode = mounted on inade;
lock mounted on inode;
increment reference count of working inode;
go to component search (for “.");
|
release working inode (algorithm iput);
working inode = inode for new inode number (algorithm iget);
}
else /* component not in directory */
return (no inode);

}

return (working inode);

Figure 5.26. Revised Algorithm for Parsing a File Name

For the second case of crossing the mount point from the mounted file system to
the mounted-on file system, consider the revised algorithm for namei in Figure 5.26.
It is similar to that of Figure 4.11. However, after finding the inode number for a
path name component in a directory, the kernel checks if the inode number is the
root inode of a file system. If it is, and if the inode of the current working inode is

126 SYSFEM CALLS FOR THE FILE SYSTEM

also root, and the path name component is dot-dot (*‘.."”), the kemel identifies the
inode as a mount point. It finds the mount table entry whose device number equals
the device number of the last found inodc, gets the inode of the mounted-on
directory, and continues its search for dot-dot (““..”") using the mounted-on incde as
the working inode. At the root of the file system, however, “..” is the root.

In the example above {cd “../../.."), assume the starting current directory of the
process s “/usr/src/uts”. When parsing the path name in namei, the starting
working inode is the current directory. The kernel changes the working inode to
that of “/usr/src” as a result of parsing the first *“..”” in the path name. Then, it
parses the second “..” in the path name, finds the root inode of the (previously)
mounted file system, “usr”’, and makes it the working inode in namei. Finally, it
parses the third “..” in the path name: It finds that the incde number for “." is
the root inode number, its working inode is the root inode, and *“..” is the current
path name component. The kemel finds the mount table entty for the *“usr mount
point, releases the current working inode (the root of the “usr’ file system), and
allocates the mounted-on inode (the inode for directory “usr” in the root file
system) as the new working inode. It then searches the directory structures in the
mounted-on “/usr” for “.” and finds the inode number for the root of the file
system (*/*). The chdir system call then completes as usual; the calling process is
oblivious to the fact that it crossed a mount point.

5.14.2 Umnounting a File System
The syntax for the umount system call is
umount(special filename);

where special filename indicates the file system to be unmounted. When
unmounting a file system (Figure 5.27), the kernel accesses the inode of the device
to be unmounted, retrieves the device number for the special file, releases the inode
(algorithm iput), and finds the mount table entry whose device number squals that
of the special file. Before the kemel actually unmounts a file system, it makes sure
that no files on that file system are still in use by searching the inode table for all
files whose device number equals that of the file system being unmounted. Active
files have a positive reference count and include files that are the current directory
of some process, files with shared text that are currently being executed (Chapter
7), and open files that have not been closed. If any files from the file system are
active, the umount call fails: if it were to succeed, the active files would be
inaccessible.

The buffer pool may still contain *“delayed write” blocks that were not written
to disk, so the kemel flushes them from the buffer pool. The kemel removes shared
text entries that are in the region table but not operational (see Chapter 7 for
detail), writes out all recently modified super blocks to disk, and updates the disk
copy of all inodes that need updating. It would suffice for the kernel to update the
disk blocks, super block, and inodes for the unmounting file system only, but for

5.14

MOUNTING AND UNMOUNTING FILE SYSTEMS

algorithm umount

input:

special file name of file system to be unmounted

output: nane

if (not super user)
return(error);
get inode of special file (algorithm namei);
extract ma jor, minor number of device being unmounted;
get mount table entry, based on major, minor number.
for unmounting file system;
release inode of special file (algorithm iput);
remove shared text entries from region table for files
belonging to file system; /* chap 7xxx */
update super block, inodes, flush buffers;
if (files from file system still in use)
return(error);
get root inode of mounted file system from mount table;
lock inode,
release inode (algorithm iput); /* iget was in mount */
invoke close routine for special device;
invalidate buffers in pool from unmounted file system;
get mode of mount peint from mount table;
lock incde;
clear flag mark’ing it as mount point;
release inode (algorithm iput); /* iget in mount */
free buffer used for super block;
free mount table slot;

Figure 5.27. Algorithm for Unmounting a File System

127

historical reasons it does so for all file systems. The kernel then releases the root
inode of the mounted file system, held since its original access during the mount
system call, and invokes the driver of the device that contains the file system to
close the device. Afterwards, it goes through the buffers in the buffer cache and
invalidates buff'ers for blocks on the now unmounted file system; there is no need to
cache data in those blocks any longer. When invalidating the bufers, it moves the
buffers to the beginning of the buffer free list, so that valid blocks remain in the

buffer cache longer.

it clears the “mounted-on’ flag in the mounted-on inode set

during the mount call and releases the inode. After marking the mount table entry
free for general use, the umount call completes.

128 SYSTEM CALLS FOR THE FILE SYSTEM

/
usr
SIC include

uts sys realfile.h

|

sys- "’

inodeh testfile.h

Figure 5.28. Linked Files in File System Tree

S.1S LINK

The link system call links a file to a new name in the fle system directory

structure, creating a new directory entry for an existing inode. The syntax for the
link system call is

link(source file name, target file name);

where source file name is the name of an existing file and target file name is the
new (additional) name the file will have after completion of the link call. The file
system contains a path name for each link the file has, and processes can access the
file by any of the path names. The kernel does not know which name was the

original file name, so no file name is treated specially. For example, after executing
the system calls

link(“‘/usr/src/uts/sys”, “/usr/include/sys™);
link(“/usr/include/realfile.h”, “/usr/src/uts/sys/testfile.h’");

the fotlowing three path names refer to the same file: *‘/usr/src/uts/sys/testfile.h”,
“/usr/include/sys/testfile.h”, and “/usr/include/realfile” (see Figure 5.28).

The kernel allows only a superuser to link directories, simplifying the coding of
programs that traverse the file system tree. If arbitrary users could /ink directories,
programs designed to traverse the file hierarchy would have to worry about getting
into an infinite loop if a user were to link a directory to a node name below it in
the hierarchy. Superusers are presumably more careful about making such links.
The capability to link directories had to be supported on early versions of the

5.15 LINK 129

system, because the implementation of the mkdir command, which creates a new
directory, relies on the capability to link directories. Inclusion of the mikdir system
call eliminates the need to link directories.

algorithm link
input: existing file name
new file name
output: nore
{
get inode for existing file name (algorithm namei);
if (too many Iinks on file or linking directory without super user permission)
{
release inode (algorithm iput);
! ceturn{ercor);
increment link count on inode;
update disk copy of inode;
unlock inode;
get parent inode for directory to contain new file name (algorithm namei);
if (new file name already exists or existing file, new file on
diff erent file systems)
{

undo update done above;
return{error);
]
create new directory entry in parent directory of new file name:
include new file name, inode number of existing file name;
release parent directory inode (algorithm iput);
release inode of existing file (algorithm iput);

Figure 5.29. Algorithm for Linking Files

Figure 5.29 shows the algorithm for /ink. The kernel first locates the inode for
the source file using algorithm namei, increments its link count, updates the disk
copy of the inode (for consistency, as will be seen), and unlocks the inode. It then
searches for the target file; if the file is present, the /ink call fails, and the kernel
decrements the link count incremented earlier. Otherwise, it notes the location of
an empty slot in the parent directory of the target file, writes the target file name
and the source file inode number into that slot, and releases the inode of the target
file parent directory via algorithm ipuz. Since the target file did not originally
exist, there is no other inode to release. The kernel concludes by releasing the
source file inode: Its link count is 1 greater than it was at the beginning of the call,
and another name in the file system allows access to it. The link count keeps count
of the directory entries that refer to the file and is thus distinct from the inode

130 SYSTEM CALLS FOR THE FILE SYSTEM

reference count. If no other processes access the file at the conclusion of the link
call, the inode reference count of the file is 0, and the link count of the file is at
least 2.

For example, when executing

link(“source”, “dir/target™);

the kernel locates the inode for file “source”, increments its link count, remembets
its inode number, say 74, and unlocks the inode. It locates the inode of *“‘dir”, the
parent directory of “target”, finds an empty directory slot in “dir’’, and writes the
file name “target” and the inode number 74 into the empty directory slot. Finally,
it releases the inode for “source” via algorithm iput. If the link count of *source”
had been 1, it is now 2.

Two deadlock possibilities are worthy of note, both concerning the reason the
process unlocks the source file inode after incrementing its link count. If the kernel
did not unlock the inode, two processes could deadlock by executing the following
system calls simultaneously.

process A: link(**a/b/c/d”, “e/f/g");
process B: link(“e/f", “a/b/c/d/ee™);

Suppose process A finds the inode for file “a/b/c/d” at the same time that process
B finds the inode for “e/f”. The phrase at the same time means that the system
arrives at a state where each process has allocated its inode. Figure 5.30 illustrates
an execution scenario. When process A now attempts to find the inode for
directory “e/f”, it would sleep awaiting the event that the inode for “f’ becomes
free. But when process B attempts to find the inode for directory “a/b/c/d”, it
would sleep awaiting the event that the inode for “d” becomes free. Process A
would be holding a locked inode that process B wants, and process B would be
holding a locked inode that process A wants. The kernel avoids this classic
example of deadlock by releasing the source file’s inode after incrementing its link
count. Since the first resource (inode) is free when accessing the next resource, no
deadlock can occur.

The last example showed how two processes could deadlock each other if the
inode lock were not released. A single process could also deadlock itself. If it
executed

link(*“a/b/c™, “a/b/c/d™);

it would allocate the inode for file “c” in the first part of the algorithm; if the
kernel did not release the inode lock, it would deadlock when encountering the
inode *“c” in searching for the file “d”. If two processes, or even one process, could
not continue executing because of deadlock, what would be the effect on the
system? Since inodes are finitely allocatable resources, receipt of a signal cannot
awaken the process from its sleep (Chapter 7). Hence, the system could not break
the deadlock without rebooting. If no other processes accessed the files over which
the processes deadlock, no other processes in the system would be affected.

S.15 LINK 131

Process A Process B

Try to get node for e
SLEEP - inode e locked

Get inode for a
Release inode a
Get inode for b
Release b
Get inode ¢
Release ¢
Get inode d

Try to get inode e
SLEEP - inode e locked

[Wakeup -- inode € unjocked |

Get inode e
Release e
Get inode
Get inode a
Release a

Try to get inode d
SLEEP - proc A locked inode

Get inode e
Release e
Try to get inode f
SLEEP - proc B locked inode

L} Se
Time | Deadlock |

Figure 5.30. Deadlock Scenario for Link

132 SYSTEM CALLS FOR THE FILE SYSTEM

However, any processes that accessed those files (or attempted to access other files
via the locked directory) would deadlock. Thus, if the file were *“/bin” o

*“/usr/bin>" (typical depositories for commands) or “/bin/sh” (the shell) the effect
on the system would be disastrous.

5.16 UNLINK

The unlink system call removes a directory entry for a file. The syntax for the
unlink call is

unlink(pathname);

where pathname identifies the name of the file to be unlinked from the directory
hierarchy. [If a process unlinks a given file, no file is accessible by that name until
another directory entry with that name is created. In the following code fragment,
for example,

unlink(**myfile™);
fd = open(*myfile”, O_RDONLY);

the open call should fail, because the current directory no longer contains a file
called myfile. If the file being umlinked is the last link of the file, the kernel
eventually frees its data blocks. However, if the file had scveral links, it is still
accessible by its other names.

Figure 5.31 gives the algorithm for wnlinking a file. The kernel first uses a
variation of algorithm namei to find the file that it must wnlink, but instead of
returning its inode, it returns the inode of the parent directory. It accesses the in-
core inode of the file to be unlinked, using algorithm iget. (The special case far
unlinking the file **.” is covered in an exercise.) After checking error conditions
and, for executable files, removing inactive shared text entries from the region table
(Chapter 7), the kernel clears the file name from the parent directory: Writing a 0
for the value of the inode number suffices to clear the slot in the directory. The
kernel then does a synchronous write of the directory to disk to ensure that the file
is inaccessible by its old name, decrements the link count, and releases the incore
inodes of the parent directory and the unlinked file via algorithm iput.

When releasing the in-core inode of the unlinked file in {put, if the reference
ocount drops to O, and if the link count is O, the kernel reclaims the disk blocks
occupied by the file. No file names refer to the inode any longer and the inode is
not active. To reclaim the disk blocks, the kernel loops through the inode table of
contents, freeing all direct blocks immediately (according to algorithm free). For
the indirect blocks, it recursively frees all blocks that appear in the various levels of
indirection, freeing the more direct blocks first. It zeroes out the block numbers in
the inode table of contents and sets the file size in the inode to 0. It then clears the
inode file type field to indicate that the inode is fréee and frees the inode with
algorithm ifree. It updates the disk since the disk copy of the inode still indicated
that the inode was in use; the inode is now free for assignment to other files.

5.16 UNLINK 133

algorithm unlink
input: file name
output: none
{
get parent inode of file to be unlinked (algorithm namei);
/* if unlinking the current directory... */
if (Jast component of file name is ".")
increment inode reference count;
else
get inode of file to be unlinked (algorithm iget):
if (file is dicectory but user is not super user)
{
release inodes €algorithm iput);
return(error);
|
if (shared text file andikk count currently 1)
remove from region table;
write parent directory: zero inode number of unlinked file,
release inode parent directory (algorithm iput);
decrement file link count;
release file inode (algorithm iput);
/* iput checks if link count is 0: if 6o,
* releases file blocks (aigorithm free) and
* frees inode (algorithm ifree);
*/

Figure 5.31. Algorithm for Unlinking a File

5.6.1 File System Coasistency

The kemel orders its writes to disk to minimize file system corruption in event of
system failure. For instance, when it removes a file name from its parent directory,
it writes the directory synchronously to the disk — before it destroys the contents of
the file and frees the inode. If the system were to crash before the file contents
were removed, damage to the file system would be minimal: There would be an
inode that would have a link count 1 greater than the number of directory entries
that access it, but all other paths to the file would still be legal. If the directory
write were not synchronous, it would be possible for the directory entry on disk to
point to a free (or reallocated!) inode after a system crash. Thus there would be
more directory entries in the file system that refer to the inode than the inode
would have I'nk counts. In particular, if the file name was that of the last link to
the file, it would refer to an unallocated inode. System damage is clearly less
severe and easier to correct in the first case (see Section 5.18).

134 SYSTEM CALLS FOR THE FILE SYSTEM

For example, suppose a file has two links with path names “a” and “b”, and
suppose a process unlinks “a”. If the kernel orders the disk write operations, then
it zeros the directory entry for “a” and writes it to disk. If the system crashes after
the write to disk completes, file “b” has link count of 2, but file “a” does not exist
because its old entry had been zeroed before the system crash. File “b” has an
extra link count, but the system functions properly when rebooted.

Now suppose the kernel ordered the disk write operations in the reverse order
and the system crashes: That is, it decrements the link count for the file “b"” to I,
writes the inode to disk, and crashes before it could zero the directory entry for file
“a”. When the system is rebooted, entries for files “a” and “b™ exist in their
respective directories, but the link count for the file they reference is 1. If a process
then wunlinks file “a”, the file link count drops to O even though file “b™ still
references the inode. If the kernel were later to reassign the inode as the result of
a creat system call, the new file would have link count 1 but two path names that
reference it. The system cannot rectify the situation except via maintenance
programs (fsck, described in Section 5.18) that access the file system through the
block or raw interface.

The kernel also frees inodes and disk blocks in a specific order to minimize
corruption in event of system failurc. When rcmoving the contents of a file and
clearing its inode, it is possible to free the blocks containing the file data first, or it
is possible to free and write out the inode first. The result is asually identical for
both cases, but it difiers if the system crashes in the middle. Suppose the kernel
first frees the disk blocks of a file and crashes. When the system is rebooted, the
inode still contains references to the old disk blocks, which may no longer contain
data relevant to the file. The kernel would see an apparently good file, but a user
accessing the file would notice corruption. It is also possible that other files were
assigned those disk blocks. The effort to clean the file system with the fsck
program would be great. However, if the system first writes the inode to disk and
the system crashes, a user would not notice anything wrong with the file system
when the system is rebooted. The data blocks that previously belonged to the file
would be inaccessible to the system, but users would notice no apparent corruption.
The fsck program also finds the task of reclaiming unlinked disk blocks easier than
the clean-up it would have to do for the first sequence of events.

5.16.2 Race Conditions

Race conditions abound in the wnlink system call, particularly when unlinking
directories. The rmdir command removes a directory after verifying that the
directory contains no files (it reads the directory and checks that all directory
entries have inode value 0). But since rmdir runs at user level, the actions of
verifying that a directory is empty and removing the directory are not atomic; the
system could do a context switch between execution of the read and unlink system
calls. Hence, another process could creat a file in the directory after rmdir
determined that the directory was empty. Users can prevent this situation only by

5.16 UNLINK 13§

use of file and record locking. Once a process begins execution of the unlink call,
however, no other process can access the file being unlinked since the inodes of the
parent directory and the file are locked.

Recall the algorithm for the link system call and how the kernel unlocks the
inode before completion of the call. If another process should unlink the file while
the inode lock is free, it would only decrement the link count; since the link count
had been incremented before unlinking the inode, the count would still be greater
than 0. Hence, the file cannot be removed, and the system is safe. The condition is
equivalent to the case where the unlink happens immediately after the link call
completes.

Another race condition exists in the case where one process is converting a file
path name to an inode using algorithm namei and another process is removing a
directory in that path. Suppose process A is parsing the path name “a/b/c/d” and
goes to sleep while allocating the in-core inode for “c”, It could go to sleep while
trying to lock the inode or while trying to access the disk block in which the inode
resides (see algorithms iges and bread). If process B wants to unlink the directory
“c”, it may go to sleep, possibly for the same reasons that process A is sleeping.
Suppose the kernel later schedules process B to run before process A. Process B
would run to completion, unlinking directory “c” and removing it and its contents
(for the last link) before process A runs again. Later. process A would try to
access an illegal in-core inode that had been removed. Algorithm ramei therefore
checks that the link count is not O before proceeding, reporting an error otherwise.

The check is not sufficient, however, because another process could conceivably
create a new directory somewhere in the file system and allocate the inode that had
previously been used for “c™. Process A is tricked into thinking that it accessed the
correct inode (see Figure 5.32). Wevertheless, the system maintains its integrity;
the worst that could happen is that the wrong file is accessed — a possible security
breach — but the race condition is rare in practice.

A process can unlink a file while another process has the file open. (The
unlinking process could even be the process that did the open). Since the kernel
unlocks the inode at the end of the open call, the unlink call will succeed. The
kernel will follow the wunlink algorithm as if the file were not open, and it will
remove the directory entry for the file. INo other processes will be able to access
the now unlinked file. However, since the open system call had incremented the
inode reference count, the kernel does not clear the file contents when executing the
iput algorithm at the conclusion of the unlink call. So the opening process can do
all the normal file operations with its file descriptor, including reading and writing
the file. But when it clases the file, the inode reference count drops to O in iput,
and the kernel clears the contents of the file. In short, the process that had opered
the file proceeds as if the unlink did not occur, and the unlink happens as if the file
were not open. Other system calls will continue to work for the opening process,
too.

In Figure 5.33 for example, a process opens a file supplied as a parameter and
then unlinks the file it just opened. The stat call fails because the original path

SYSTEM CALLS FOR THE FILE SYSTEM

Proc A Proc B Proc C

Unlink file ¢
Find inode for ¢ locked
Sleeps

Search dir b for name ¢
Get inode number for ¢
Finds inode for ¢ locked

Sleeps

Wakes up and c free
Unlinks c,
old inode free if
link count 0

Assign inode to new file n
Happen to assign
old inode for ¢

Eventually release
inode n lock

Wakes up and old c inode free
(now n)
Get inode for n
Search n for name d

W
Time

Figure 5.32. Unlink Race Condition

S.16 UNLINK 137

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntlh>
main(argc, argv)
int argc,,
char *argvi);
{
int fd;
char bufl1024];
struct stat statbuf;
if (argc = 2) /* need a parameter */
exit();
fd = open(argvi1], O RDONLY);
if (fd == —1) /* open fails */
exitO;
if (unlink(argvl1]) == —{) /* unlink file just opened */
exit();
if (stat(argvill, &statbuf) == —1) /* stat the file by name*/
printf(“stat %s fails as it should\n™, argvll]);
else
printf{“stat %s succeeded™\n", argvil});
if (Fstat(fd, &statbuf) == —1) /* stat the file by fd */
printf(“fstat %s fails"\n", argvll]);
else
printf(“fstat %s succeeds as it should\n’*, argvi1]);
while (read(fd, buf, sizeof(buf)) > 0) /* read open/unlinked file */
printf(*%1024s>, buf); /* prints 1K byte field */
}

Figure 5.33. Unlinking an Opened File

name no longer refers to a file after the wnlink (assuming no other process created
a file by that name in the meantime), but the fstar call succeeds because it gets to
the inode via the file descriptor. The process locops, reading the file 1024 bytes at a
time and printing the file to the standard output. When the read encounters the
end of the file, the process exits: After the close in exit, the file no longer exists.
Processes commonly create temporary files and immediately unlink them; they can
continue to read and write them, but the file name no longer appears in the
directory hierarchy. If the process should fail for some reason, it leaves no trail of
temporary files behind it.

138 SYSTEM CALILS FOR THE FILE SYSTEM

5.17 FILE SYSTEM ABSTRACTIONS

Weinberger introduced file system types to support his network file system (sse
[Killian 84]) for a brief description of this mechanism), and the latest release of
System V supports a derivation of his scheme. File system types allow the kernel to
support multiple file systems simultaneously, such as network file systems (Chapter
13) or even file systems of other operating systems. Processes use the usual UNIX
system calls to access files, and the kernel maps a genenic set of file operations into
operations specific to each file system type.

File System Generic System V
Operations Inodes File System Inode
System V open S
close F
read
write 4 N
Remote ropen
rclose
rread Remote
rwrite Inode
L= By

Figure 5.34. Inodes for File System Types

The inode is the interface between the abstract file system and the specific file
system. A generic in-core inode contains data that is independent of particular file
systems, and points to a file-system-specific inode that contains file-system-specific
data. The file-system-specific inode contains information such as access permissions
and block layout, but the generic inode contains the device number, inode number,
file type, size, owner, and reference count. Other data that is file-system-specific
includes the super block and directory structures. Figure 5.34 depicts the generic
in-core inode table and two tables of file-system-specific inodes, one for System V
file system structures and the other for a remote (network) inode. The latter inode
presumably contains enough information to identify a file on a remote system. A
file system may not have an inode-like structure; but the file-system-specific code
manufactures an object that satisfies UNIX file system semantics and allocates its
“inode” when the kernel allocates a generic inode.

5.17 FILE SYSTEM ABSTRACTIONS 139

Each file system type has a structure that contains the addresses of functions
that perform abstract operations. When the kernel wants to access a file, it makes
an indirect function call, based on the file system type and the operation (see
Figure 5.34). Some abstract operations are to open a file, close it, read or write
data, return an inode for a file name component (like namei and iget), release an
inode (like iput), update an inode, check access permissions, set file attributes
(permissions), and mount and unmount file systems. Chapter 13 will illustrate the
use of file system abstractions in the description of a distributed file system.

5.18 FILE SYSTEM MAINTENANCE

The kernel maintains consistency of the file system during normal operation.
However, extraordinary circumstances such as a power failure may cause a system
crash that leaves a file system in an inconsistent state: most of the data in the file
system is acceptable for use, but some inconsistencies exist. The command fsck
checks far such inconsistencies and repairs the file system if necessary. It accesses
the file system by its block or raw interface (Chapter 10) and bypasses the regular
file access methods. This section describes several inconsistencies checked by fsck.

A disk block may belong to more than one inode or to the list of free blocks and
an inode. When a file system is originally set up, all disk blocks are on the free list.
When a disk block is assigned for use, the kernel removes it from the free list and
assigns it to an inode. The kernel may not reassign the disk block to another inode
until the disk block has been returned to the free list. Therefore, a disk block is
either on the free list or assigned to a single inode. Consider the possibilities if the
kernel freed a disk block in a file, returning the block number to the in-core copy of
the super block, and allocated the disk block to a new file. If the kernel wrote the
inode and blocks of the new file to disk but crashed before updating the inode of
the old file to disk, the two inodes would address the same disk block number.
Similarly, if the kernel wrote the super block and its free list to disk and crashed
before writing the old inode out, the disk block would appear on the free list and in
the old inode.

If a block number is not on the free list of blocks nor contained in a file, the file
system is inconsistent because, as mentioned above, all blocks must appear
somewhere. This situation could happen if a block was removed from a file and
placed on the super block free list. If the old file was written to disk and the
system crashed before the super block was written to disk, the block would not
appear on any lists stored on disk.

An inode may have a non-0 link count, but its inode number may not exist in
any directories in the file system. All files except (unnamed) pipes must exist in
the file system tree. If the system crashes after creating a pipe or after creating a
file but before creating its directory entry, the inode will have its link field set even
though it does not appear to be in the file system. The problem could also arise if a
directory were unlinked before making sure that all files contained in the directory
were unlinked.

140 SYSTEM CALLS FOR THE FILE SYSTEM

If the format of an inode is incorrect {for instance, ¥ the file type ficld has an
undefined value), something is wrong. This could happen if an administrator
mounted an improperly formatted file system. The kernel accesses disk blocks that
it thinks contain inodes but in reality contain data.

If an inode number appears in a directory entry but the inode is free, the file
system is inconsistent because an inode number that appears in a directory entry
should be that of an allocated inode. This could happen if the kernel was creating
a new file and wrote the directory entry to disk but did not write the inode to disk
before the crash. It could also occur if a process unlinked a file and wrote the
freed inode to disk, but did not write the directory element to disk before it
crashed. These situations are avoided by ordering the write operations properly.

If the number of free blocks or free inodes recorded in the super block does not
conform to the number that exist on disk, the file system is inconsistent. The
summary information in the super block must always be consistent with the state of
the file system.

5.19 SUMMARY

This chapter concludes the first part of the book, the explanation of the file system.
It introduced three kernel tables: the user file descriptor table, the system file
table, and the mount table. It described the algorithms for many system calls
relating to the file system and their interaction. It introduced file system
abstractions, which allow the UNIX system to support varied file system types.
Finally, it described how fsck checks the consistency of the file system.

5.20 EXERCISES

1. Consider the program in Figure 5.35. What is the return value for all the reads and
what is the contents of the buffer? Describe what is happening in the kernel during
each read.

2. Reconsider the program in Figurc 5.35 but suppose the statement

Iseek(fd, 9000L, 0);

is placed before the first read. What does the process see and what happens inside the
kernel?

3. A process can open 3 file in write-append mode, meaning that every write operations
starts at the byte offset marking the current end of file. Therefore, two processes can
open a file in write-append mode and write the file without overwriting data. What
happens if a process opens a file in write-append mode and secks to the beginning of
the file?

4. The standard 1/0 library makes user reading and writing more efficient by buffering
the data in the library and thus potentially saving the number of system calls a user
has to make. How would you implement the library functons fread and fwrite?
What should the library functions fopen and fclose do?

5.20 EXERQISES 141

#include <fentlh>
main(
{
int fd;
char bufl1024];
fd = creat(*junk”, 0666):
Iseck(fd, 2000L, 2); /* seck to byte 2000 */
write(fd, **hello™, 5);
close(fd);

fd = open(**junk”, O_RDONLY);

read(fd, buf, 1024); /*® read zero's */
read(fd, buf, 1024); /* catch something */
read(fd, buf, 1024);

Figure 5.35. Reading 0Os and End of File

5. If a process is reading data consecutively from a file, the kernel notes the value of the
rcad-ahcad block in thc in~orc inodc. What happens if scveral proccases
simultaneously read data consecutively from the same file?

#tinclude <fcntlh>

mainQ
{
int fd;
char buff256];

fd = open(*/etc/passwd”, O_RDONLY);
if (read(fd, buf, 1024) < 0)
printf(“read fails\n"");

Figure 5.36. A Big Read ina Little Buffer

6. Consider the program in Figure 5.36. What happens when the program is executed?
Why? What would happen if the declaration of buf were sandwiched between the
declaration of two other arrays of size 10247 How does the kernel recognize that the
read is too big for the buffer?

* 7. The BSD file system allows fragmentation of the last block of a file as needed,
according to the following rules:

e Structures similar to the super block keep track of frec fragments;

e The kernel does not keep a preallocated paol of free fragments but breaks a froe
block into fragments when aecessary;

142

* 8.

%3

¢ 10.

11.

12.

13.

* 14,

SYSTEM CALLS FOR THE FILE SYSTEM

e The kernel can assign block fragments only for the last block of a file;
o If a block is partitioned into several fragments, the kermel can assign them to
different files;

o The number of fragments in a block is fixed per file system;

o The kernel allocates fragments during the write system call.
Design an algorithm that allocates block fragments to a file. What changes must be
made to the inode to allow for fragments? How advantageous is it from a
performance standpoint to use fragments for files that use indirect blocks? Would it
be more advantageous to allocate fragments during a close call instead of during a
write call?
Recall the discussion in Chapter 4 for placing data in a file’s inode. If the size of the
inode is that of a disk block, design an algorithm such that the last data of a file is
written in the inode block if it fits. Compare this method with that described in the
previous problem.
System V uses the fcnt! system call to implement file and record locking;

fentl(fd, cmd, arg);

where fd is the file descriptor, cmd specifies the type of lacking operation, and arg
specifies various parameters, such as lock type (read or write) and byte offsets (see the
appendix). The locking operatiosns include

e Test for locks belonging to other processes and return immediately, indicating

whether other locks were found,

o Sct a lock and sleep until sucoessful,

o Set a lock but return immediately if unsuccessful.
The kemnel automatically releases locks set by a process when it closes the file.
Describe an algorithm that implements file and record locking. If the locks are
mandatory, other pcocesses should be prevented from accessing the file. What
changes must be made to read and write?
if a process goes to sleep while waiting for a file lock to become free, the possibility for
deadlock exists: process A may lock file “one” and attempt to lock file “two,” and
process B may lock file “two” and attempt to lock file “one.” Both processes are in a
state where they cannot continue. Extend the algorithm of the previous problem so
that the kernel detects the deadlock situation as it is about to occur and fails the
system call. Is the kernel the right place to check for deadlocks?
Before the ex’istence of a file locking system call, users could get cooperating processes
to implement a locking mechanism by executing system calls that exhibited atomic
features. What system calls described in this chapter could be used? What are the
dangers inherent in using such methods?
Riichie claims (see {Ritchie 8I]) that file locking is not sufficient to prevent the
confusion caused by programs such as editors that make a copy of a file while editing
and then write the original file when done. Explain what he meant and comment.
Consider another method for locking files to prevent destructive update: Suppose the
inode contains a new permission setting such that it allows only one process at a time
to open the file for writing, but many processes can open the file for reading. Describe
an implementation.
Consider the program in Figure 5.37 that creates a ditectory node in the wrong format
(there are no directory entries for *" and “.”). Try a few commands on the new
directory such as Is —/, Is —Id, or cd. What is happening?

5.20

15.

16.

17.

* 18.

19.

20.

21.

22.

23.

EXERCISES 143

main(argc, argv)
int argc;
char *argv(];

if (argc '= 2)

{
printf(“try: command directory name\n");
exitQ;

]

/* modes indicate: directory (04) rwx permission for all */
/* only super user can do this */
if (mknod(argvl1], 040777,) == —])

printf(*mknod fails\n"");

¥Figure 5.37. A Half-Baked Directory

Write a program that prints the owner, file type, access permissions, and access times
of files supplicd as parameters. If a file (parameter) is a directory, the program should
read the directory and print the above information for all files in the directory.
Suppose a directory has read permission for a user but not execute permission. What
happens when the directory is used as a parameter to Is with the “—i” option? What
about the “—1” option? Explain the answers. Repeat the problem for the case that
the directory has execute permission but not read permission.
Compare the permissions a process must have for the following operations and
comment.

e Creating a new file requires write permission in a directory.

e Creating an existing file requires write permission on the file.

e Unlinking a file requires write permission in the directory, not on the file.

Write a program that visits every directory, starting with the current directory. How
should it handle loops in the directory hierarchy?

Execute the program in Figure 5.38 and describe what happens in the kernel. (Hint:
Execute pwd when the program completes.)
Write a program that changes its root to a particular directory, and investigate the
directory tree accessible to that program.

Why can’t a process undo a previous chroot system call? Change the implementation
so that it can change its root back to a previous root. What are the advantages and
disadvantages of such a feature?

Consider the simple pipe example in Figure 5.19, where a process writes the string
“hello” in the pipe then reads the string. What would happen if the count of data
written to the pipe were 1024 instead of 6 (but the count of read data stays at 6)?
What would happen if the order of the réad and write system calls were reversed?

In the program illustrating the use of named pipes (Figure 5.19), what happens if
mknod discovers that the named pipe already exists? How does the kernel implement
this? What would happen if many reader and writer processes all attempted to

144

24,

25.

=26

27.

28.

29.

* 30.

SYSTEM CALLS FOR THE FILE SYSTEM

main(argc, argv)
int argc;
char *argv(l;

if (argc != 2)

{
printf(“need 1 dir arg\n™);
exit();

}

if (chdir(argv[1]) == —1)

printf(“%s not a directory\n”, argvll]);
}

Figure 5.38. Sample Program with Chdir System Call

communicate through the named pipe instead of the one reader and one writer implicit
in the text? How could the processes ensure that only one reader and one writer
process were communicating?

When opening a named pipe for reading, a process sleeps in the open until another
process opens the pipe for writing. Why? Couldn’t the pcocess return successfully
from the open, continue processing until it tried to read from the pipe, and sleep in the
read?

How would you implement the dup2 (from Version 7) system call with syntax

dup2(oldfd, newfd);

where ofdfd is the file descriptor to be duped to file descriptor number newfd? What
should happen if newfd already refers to an open file?

What strange things could happen if the kernel would allow two processes to mount
the same file system simultaneously at two mount points?

Suppose a process changes its current directory to **/mnt/a/b/c” and a second prucess
then miounts a file system onto **/mnt”. Should the mount succeed? What happens if
the first process executes pwd? The kernel does not allow the mount to succeed if the
inode reference count of “/mnt” is greater than |. Comment.

[n the algorithm for crossing a mount point on recognition of *..”” in the file path
name, the kernel checks three conditions to sec if it is at a mount point: that the
found inode has the root inode number, that the working inode is root of the file
system, and that the path name component is “.”. Why must it check all three
conditions? Show that checking any two conditions is insufficient to allow the process
to cross the mount point.

If a user mounts a file system "read-only," the kernel sets a flag in the super block.
How should it prevent write operations during the write, creat, link, unlink, chown,
and chmod system calls? What write operations do all the above system calls do to
the file system?

Suppose a process attempts to wmount a file system and another process is
simultaneously attempting to creat a new file on that file system. Only one system call
can succced. Explore the cace condition.

5.20

T 3.

32.

33.

* 34

* 35.

36.

37.
38.

EXERCISES 145

When the umount system call checks that no more files are active on a file system, it
has a problem with the file system root inode, allocated via iget during the mount
systemn call and hence having refcrence count greater than 0. How can umount be
sure there are no active files and take account for the file system root? Consider two
cases:
e umount releases the root inode with the ipur algorithm before checking for active
inodes. (How does it recover if there were active files after all?)
e umount checks for active files before releasing the root inode but permits the root
inode to remain active. (How active can the root inode get?)
When exccuting the command /s =/d on a dircctory, note that the number of links to
the directory is never I. Why?
How does the command mkdir (make a new directory) work? (Hint: When mkdir
completes, what are the inode numbers for **.” and **.."%)
Symbolic links refer to the capability to /ink files that exist on different file systems.
A new type indicator specifies a symbolic lisik file; the data of the file is the path name
of the fle to which it is linked. Describe an implementation of symbolic links.
What happens when a process executes

unlink(*.");

What is the current directory of the process? Assume superuser permissions.

Design a system call that truncates an existing file to arbi'trary sizes, supplied as an
argument, and describe an implementation. Implement a system call that allows a
user to remove a file segment between specified byte offsets, compressing the file size.
Without such system calls, encode a program that provides this functionaliity.

Describe all conditions where the reference count of an inode can be greater than 1.

In file system abstractions, should each file system type support a private lock
operation to be called from the genertc code, or does a generic lock operation suffice?

	CONTENTS
	Chp1

	Chp2

	Chp3

	Chp4

	Chp5

	Chp6

	Chp7

	Chp8

	Chp9

	Chp10

	Chp11

	Chp12

	Chp13

