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INTERNAL 

REPRESENTATION OF FILES 

As observed in Chapter 2, every Ele on a UNIX system has a unique inode. TJ 
inode contains the information necessary for a proc=s to ac.s a Fle, such as Fle 
ownership, acc;s rights, Ele size, and lktion of the Fle's data in the Fle system. 
PÔňeæ ac.s Fl; by a well deEned set of system calls and sÓÎfy a Fle by a 
character string that is the path name. Each path name uniquely speciF< a Fle, 
and the ke|el converts the path name to the Fle's inode. 

This chapter descri&s the internal structure of Fles in the UNIX system, ae 
the next chapter describes the system call interface to El;. Section 4.1 examines 
the inle and how the kernel manipulat; it, and Section 4.2 examines the internal 
structure of regular Eles and how the kernel r7ds and writes their data. Sectim 
4.3 investigat< the structure of dir9tori;, the Fl< that allow the kernel ˄ 
organize the Fle system as a hierarchy of El<, and Section 4.4 pr<ents the 
algorithm for converting user Ele Ă÷ to inl<. Section 4.5 gives the structure 
of the super block, and Sectiof 4.6 and 4.7 present the algorithms for assignment 
of disk inod; and disk blocks ) Fles. Finally, S8tion 4.8 talks a(ut other Fle 
tyr in the system, namely, piqs and devi- Fles. 

The algorithms d;cri' in this chapter &'py the layer a(ve the buCer 
cache algorithms explained in the last cbapter (Figure 4.1). The algorithm iget 
returns a previously identiEed inle, sssibly reading it from disk via the buDer 
cache, and the algorithm iput rel7ses the inode. The algorithm bmop sets kernel 
parameters for accessing a Ele. The algorithm namei converts a user-level path 
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name to an inode, using the algorithms iget, iput, and bmap. Algorithms aÛ� and 
free all}ate and free disk bl�� for Lles, and algorithms ia�Ï and iOe assign 
and free in�B for IlA. 

4.1 !NODES 

�1.1 () 

Inodes exist in a static form on disk, and the kernel reads them into an in	re 
in�e to manipulate them. Disk in�B consist of the following Lelds: 

• File owner identiJer. Ownership is divided .tween an individual owner and a 
.. group" owner and deKnB the set of users who have ac2s rights to a Lle. The 
superuser has ac2s rights to all LlB in the system. 

• File type. FilC may be of type regular, directory, character or bl|k s�ial, or 
FIFO (pi�s). 

• File accBs permissions. The system prot=ts Iles according to thr@ classes: 
the owner and the group owner of the Lle, and other users; each class has ac1ss 
rights to r<d, write and execute the Ne, which can be set individually. Because 
directoriB cannot be executed, execution �rmission for a dir? givB the 
right to search the dir>tory for a Lle name. 

• File aÈÖs timB, giv,ng the time the Mle was last m�iIed, when it was last 
ac2sed, and when the in�e was last m�iIed. 
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• Number of links to the Ple, reprFenting the number of names the Qle has in the 
dir@tory hierarchy. Chapter 5 explains Rle links Ϗ detail. 

• Table of contents for the disk addr͊ ͋ of data in a Sle. Although ʳ treat 
the data in a Sle as a logical stream of bytes, the kernel saves the data in 
discontiguous disk bloks. The inpe identiRG the disk blocf that contain the 
Sle's data. 

• File size. Data in a Rle is addrFsable by the num1r of bytH from tZ 
beginning of the Rle, starting from byte offset 0, and the Rle size is l greater 
than the highHt byte offset of data in the Ple. For example, if a user creatI a 
Ple and writes only 1 byte of data at byte offset ƶƷ in the Rle, the size of ׉ 
Rle is 151 bytes. 

The inode dq п specify the uth name� that ac6s the Rle. 

owner mjb 

group Ǥ 
tyw regular Rle 

pEms rwxr-xr-x 

ac78 Oct 23 1984 1:45 P.M. 

mpiRB Oct 22 1984 10:30 AM. 

inpe Ɍ 23 1984 1:30 P.M. 

size 6030 bytH 

disk addrHsJ 

! 4.2. Sample Disk lnode 

Figure 4.2 shows the disk inode of a sample Rle. This inode is that of a 
regular Ue ownB by "mjb," which contains 6030 bytJ. The system vrmits 
"mjb" to read, write, or e�Aute the Rle; members of the group "os" and all ×Ùr 
users can only read or execute the Tle, not write it. The last time anyone read the 
Rle was on Octo2r 23, 1984, at 1:45 in the afternoon, and the last time anyone 
wrote the Ple was on Octo3r 22, 1984, at 10:30 in the morning. The inode was 
last changed on October 23, 1984, at 1:30 in the afternrn, although the data Â 
the Rle was not written at that time. The kernel encpes the above information in 
the inode. Note the distinction betwCn writing the contents of an inode to disk 
and writing the contents of a Rle to disk. The contents of a Rle change only whD 
writing it. The contents of an inpe change when changing the contents of a Qle or 
when changing its owner, vrmission, or link ��gs. Changing the contents ^ a 
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file automati9lly impliN a change to the in�e, but changing the in�e d� not 
imply that the contents of the ]le change. 

The in-<re copy of the in�e contains the following ^elds in addition to the 
^elds of the disk inode: 

• The status of the in-core in�e, indicating whether 
the inode is locked, 
a p=s is waiting for the inode to be<me unlocked, 
the in-<re reprNentation of the in�e differs from the disk <py as a rNult 
of a change to the data in the in�e, 
the in-core reprLentation of the file di[ers from the disk copy as a result of 
a change to the file data, 
the cle is a mount ¢int (Section 5.15). 

• The logical device number of the file system that contains the ^le. 
• The inode number. Since in�L are stored in a linear array on disk (recall 

SItion 2.2.1), the kernel identifies the number of a disk inode by its position in 
the array. The disk inode does not need this field. 

• Pointers to other in-core in�es. The ke¬el links inodN on hash queues and on 
a frJ list in the same way that it links buffers on buffer hash queuO and on the 
buffer free list. A hash queue is identî ed according to the inode's logical 
device number and in�e num3r. The kernel can wnl�in at mࡘl o؁ inǾrҖ 
copy of a disk in�e, but in�M can be simultaneously on a hash queue and on 
the frJ list. 

• A reference count, indi:ting the num4r of instan;s of the ^le that are active 
(such as when opened). 

Many `elds ü the in-core inode are analogous to aelds in the buffer header, and 
the management of inodes is similar to the management of buffers. The i�de lock, 
when set, prevents other processN from accOsing the in�e; other pr89 set a 
dag in the inode when attempting to accOs it to indicate that they should be 
awakened when the l�k is relHsed. The kernel sets other egs to i�icate 
discrepanciN 4tween the disk in�e and the in-core copy. When the ke­el nKds 
to re<rd changL to the ble or to the in�e, it writes the in-core copy of the in�e 
to disk after examining these dags. 

The m�t striking difference betwJn an in-core inode and a bu\er header is the 
in-core reference count, which counts the number of active instan;s of the ^le. An 
inode is active when a pr�ss all�ates it, such as when opening a file. N inode is 
on the free list only if its reference count is 0, meaning that the kernel can 
reallocate the in-core inode to another disk inode. The free list of inodN thus 
servM as a cache of inactive in�M: If a prKs attempts to access a ^le wh�e 
in�e is not currently in the in-core in�e £ol, the kernel reall�tO an in-core 
in�e from the frJ list for its '. ʺ the other hand, a buffer has no referen; 
c�nt; it is on the free list if and only if it is unl�ked. 
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algorithm iget 
input: ¾e syst* inMe number 
output: lLked inMe 
{ 

while (· done) 
{ 

} 

if (inMe ώ ϒ �che) { 

} 

if (iIe lLked) { 
sleep (event inMe �com, unlock'); 
continue; t• loop back to while •t 

} 
t• sSial pðsing for mount Tints (Chapter 5) •t 
if (inMe on iJe free list) 

Ǿ frO free list; 
increment inMe ref+ence cQnt; 
retf (inMe); 

t• inMe not · inMe cache •t 
if (no inN on f[e list) 

retg(error); 
ǽe G inMe from fr( list; 
reè inode number and .le system; 
remove iIe /om old hash queue, place Z Ű one; 
read iHde from disk (algorithm bread); 
initialize inMe (e.g. r)erence count � I); 
reth (iIe); 

Figure 4.3. Algorithm for Allocation of In-Core Jnod& 

4.1.2 A��  Í 

The keâel identib° Úrticular in5& by their Hle system and inode number and 
allocat& in-core inodes at the r¬uest of higher-level algorithms. The algorithm 
lget allocates an in-core copy of an inode (Figure 4.3); it is almÕt identical to the 
algorithm getblk ͳ Gnding a disk block in the buffer �che. The keãel maps the 
devî  number and inode num\r into a hash queue and searches the queue for the 
in5e. If it cannot Gnd the inÑe, it allmat& one from the ˦e list and lmÈ it. 
The kernel then prepares to read the disk copy of the newly ac^ssed inode into the 
in-core copy. It already knows the in5e num\r and logical device and ¡mputes 
the logical disk block that contains the inode ac¢ding to how many disk inod& bt 
into a disk block. The computation follows the formula 
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block num - ((in©e number - 1) I num;r of in©es ³r block) + 
start block of in©e list 

where the division o³ration returns the integer part of the quotient. For example, 
assuming that block 2 is the beginning of the in©e list and that there are 8 inª 
Ŧ block. then in©e number 8 is in disk block 2, and in©e num:r 9 is in disk 
block 3. If there are 16 in©c in a disk block, then inode numbers 8 a� 9 are in 
disk block 2, and in©e number 17 is the vrst inode in disk block 3. 

When the kernel knows the device and disk block number, it reads the bl¦k 
using the algorithm ̠  ˻ (Chapter 2), then uses the foJlowing formula to compute 
the byte osset of the inode in the block: 

((in©e number - 1)  modulo (number of in©c per block)) • size of disk in©e 

For example, if each disk in©e §cupies ʵ byte and there are 8 in« Ŧ disk 
block, then inode number 8 starts at byte offset k8 in the disk block. The keÄel 
removes the in-core inode from the free Jist, placc it on the correct hash queue, 
and sets its in-core reference count to l .  It copies the vle type, owner vYlds, 
permission settings, link count, wle size, and the table of contents from the disk 
in©e to the in-core in©e. a� returns a locked inode. 

The keÅel manipulatf the in©e lock and reference Junt inde´nd_tly. The 
lock is set during execution of a system call to prevent other ܍܌ from 
accdsing the in©e while it ý in use (and µssibly inconsistent). The keÆel 
releases the lock at the conclusion of the system call: an inode is never locked 
across system calls. The kernel increments the reference count for every active 
reference � a xle. For example, Section 5.1 will show that it increments the i�de 
referenH count when a pͺs oۆns a xle. It decrements the reference count only 
when the reference <mc inactive, for example, when a pÈs cl®es a ye. 
The reference count thus remains set across multiple system Flls. The lock is free 
between system calls to allow proccsc to share simultan`s acccs to a ze; the 
reference c¯nt remains set between system calls to prevent the kernel from 
reallocating an active in-core inode. Thus, the kernel Gn lock and unlock an 
all̈ ted inode inde³ndent of the value of the referenH count. System calls other 
than oۇn all¦ate and release inodc, 9 will : s\n in Chapter 5. 

RetØing to algorithm iget, if the keÇZ) attempts to take an in©e from the 
free Jist but v�s the fr] list empty, it re¶ts an error. This is different from the 
philosophy the kbel foUows for disk buus, where a ńňs slee· until a buffer 
beJmes fr :̂ Proc/0 have control over the allocation of inodg at user level via 
execution of oۈn and close system calls, and consauently the kernel Fnnot 
guarantee when an inode wilJ become available. Therefore, a proIss that g¬s to 
sl]p waiting for a fr] in©e to =e available may never wake up. Rather than 
leave such a prÔÖs "hanging," the kernel fails the system call. However, 
pΐΑ do not have such control over buffers: BcÆsÚ a process cannot �ep a 
buffer locked across system calls, the kernel can guarantee that a buter will 
b[ome free soon, and a proccs therefore slee  ̧ until one is available. 
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The preceding paragraphs cover the case where the ke�el allocated an inode 
that was not in the inode cache. If the inode is in the cache, the procCs W would 
End it on its bash queue and check if the inode was currently lxk? by another 
pƑs 
). If the in|e is lxked, zs A sleeps, setting a Jg in the in-c~e 
inode to indicate that it is waiting for the inode to (come free. When pr{ss B 
later unlocks the in�e, it awakens all pƛƜ (including procBs A) waiting for 
the in|e to become frA. When process A is Fnally able to use the in|e, it locks 
the in|e so that other pr�sB cannot allzte it. If the reference count was 
previously 0, the in|e also ap�ars on the frA list, so the kernel removB it from 
there: the in|e is no longer Ae. The ke�el increments the in|e reference 3nt 
and returns a lyked inode. 

To summarize, the iget algorithm is u  ˧ toward the beginning of system calls 
when a procBs Grst accessB a Gle. The algorithm retu�s a lxked in|e structure 
with reference count l M>ter than it had previously (en. The in-core i�e 
2tains up-to-date information on the state of the Ele. The kernel unlxks the 
inode before returning from the system call so that other system calls /n access 
the in|e if they wish. Chapter 5 treats thBe /ses in greater detail. 

algorithm iput t• release (put) a�s to in-core inhe •t 
input: Ʌinter to in-­re in7e 
output: Ċ 
( 

l)k in7e if ċ already lďked; 
decrement R reÁ¬ count; 
Ƹ (refer2) ²t -- 0) 
( 

} 

if (in7e ǚȂ ®nt - 0) 

( 

} 

free disk bl)ks for file (algorithm free, ÿctii 4.7); 
set Ie type H 0; 
fr̀  in}e (algorithm ifr̀ , sectii 4.6); 

if � ac01 or ice chang@ or Hle changed) 
u�ate disk in}e; 

put inhe on free list; 

release in7e lock; 

Þğe 4.4. Releasing an In|e 
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4.1.3 RelĹð ֵ 
When the kernel releases an in�e (algorithm iput, Figure 4.4), it decrements its 
in-core reference count. If the count drops to 0, the kernel writes the in�e to disk 
if the in-6re copy differs from the disk copy. They differ if the Tle data has 
changed, if the Ule access time has changed, or if the Vle owner or accFs 
permissions have changed. The kernel placH the inode on the free list of inodes, 
effectively caching the inode in ơ it is neCed again ϡϢ. The kernel may also 
release all data bl�ks ass�iated with the Ule and free the in�e if the num/r of 
links to the Ule is 0. 

4.2 ˌUɻ OF A REGL�R ʌ 
As mentionD above, the in�e contains the table of contents to l�ate a Tle's data 
on disk. Since each block on a disk is addressable by number, the table { contents 
consists of a set of disk block numbers. If the data in a Vle were stored in a 
contiguous sBtion of the disk (that is, the Tle �cupied a linear sequen5 of disk 
bl�ks), then storing the start block addre£ and the Ule size in the inode would 
suS5 to access all the data in the Ule. HowJer, such an allo4tion strategy would 
{t allow for simple exӰnsinn trtd contraction of Wles in the Ye system without 
running the risk of fragmenting frȉ storage area on the disk. Furthermore, the 
ke�el would have to all�te and rFerve contiguous s�ce in the Vle system before 
allowing operations that would incr@se the Ule size. 

. . . . . . . . . . . . I 
40 

Block AddrGsG 

File A I File B � �ilc C I 
50 70 

. . . . . . . . . . . . I File A I 
40 / 

Bl�k Addr{| 

FrE I File C I File B I···· 
81 

ÃÜ� 4.5. Allocation of Contiguous Files and Fragmentation of Free S�ce 

For example, sup�e a user crAtes three VlH, A, B and C, each consistin# of 

10 disk bl�m of storage, aҒ sup�se the system all�ated storage for the th�e 
Xles contiguously. lf the user then wishI to add 5 bl�ks of data to the middle Vle, 
B, the ke�el would have to copy Vle B to a place in the Tle system that had r�m 
for 1 5  bl�ks of storage. Aside from the ex�nse of such an operation, the disk 
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blocks previously �cupied by `le B's data would A unusable except � a� 
smaller than 10 bl�ks (Figure 4.5). The kernel could minimize fragmentation of 
storage s�H by �ri�ically running garbage collection pr�edures to com�ct 
available storage, but that would place an added drain on processing power. 

For meater hexibility, the ke¦el allocatY ale spaI one block at a time and 
allows tq data in a ale to A spread throughout the ale system. But this all�ation 
scheme complicates the task of loGting the data. The table of contents c�ld 
consist ^ a list of block numbers such that the blocks contain the data belonging j 
the ble, but simple calculations show that a linear list of cle blocks in the inã is 
di_cult to manage. If a logical bl�k Kntains 1 K bytes, then a ale Knsisting of 
lOK bytY would require an index of 10 block numArs, but a l̀e Kntaining l7K 
bytY would require an index of 100 bl�k numArs. Either the size of the in�e 
would vary according to the size of the l̀e, or a relatively low limit would have to 
A placU on the size of a ale. 

To keep the in�e structure small yet still allow large `les, the table of contents 
of disk bl�ks conforms to that shown in Figure 4.6. The System V UNIX system 
runs with 13 entries in the inã table of contents, but the principlY are 
inde��ent of the number of entries. The blocks marked "direct" in the g̀ure 
contain the numArs of disk bl�ks that contain rRl data. The bl�k markV 
"single indirect" refers to a block that contai� a list of direct block numArs. To 
access k data ĝ the indirect block, the kernel must read the indirect block, dnd 
the ap�opriate direct block entry, and then read the direct bl�k to `nd the data. 
The bl�k marked "double indirect" contains a list of indirect bl�k numArs, and 
the block marked "triple indirect" contains a list of double indirect block numbers. 

In principle, the method could be extended to sup�rt "quadruple indirect 
blocks," "quintuple indirect bl�ks," and � on, but the current structure has 
s¶· in practice. Assume that a lolcal bl�k on the cle system holds 1 K bytes 
and that a bl�k numAr is addȀȁble by a 32 bit (4 byte) intXer. Then a bloJ 
can hold up to 256 block numbers. The maximum number of bytes that Kuld be 
held in a ale is calculatW (Figure 4.7) at well ǩ? 16 gikbytY, using 10 direct 
bl�ks and 1 indirSt, 1 double indirTt, and 1 triple indirect bl�k in the in�e. 
Given that the ale si¾ eeld in the inode is 32 bits, the size of a l̀e is e]ectively 
limited to 4 gigabytY (232). 

ProcYsY acHss data in a `le by byte o ŝet. They work in terms of byte c�nts 
and view a `le as a stream of bytes starting at byte addrYs 0 and going up to the 
size of the fle. The kernel converts tq user view of bytY into a view of bl�k® 
The ele starts at logical block 0 and continuY to a logical block numAr 
Krres�nding to the l̀e size. The kernel accessY the inode and converts the 
logical ge block into the appropriate disk bl�k. Figure 4.8 gives the algorithm 
bmap for Knverting a ale byte o ŝet into a physiFl disk block. 

Consider the block layout for the l̀e in Figure 4.9 and assume that a disk block 
contains I 024 bytes. If a pr0s wants to accYs byte o]set Ǵǵ, the ke§l 
Glculates that the byte is in direct bl�k 8 in the ale (counting from O). It then 
aIsY bl�k numAr 367; the 808õ byte in that block (starting from 0) is byte 
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10 direct bl�ks with 1 K bytS each -
1 inF bl�k with 256 direct blaks -
1 double indirect bl�k with 256 indirect bl�s -I triple indirect bl�k with 256 Guble indirect bl�ks -

JOK bytes 
256K 7tĐ ÁM bytR 
1� bytT 

�gѦ 4.7. Byte Caecity of a File - 1 K Byt< Per Bl_k 

algorithm <ap t• bl�k map of logi@l ]le byte offset to l̂e system bl�k •t 
input: (1) in�e 

(Ƨ 7te oĖset 
output: (I) bl� number in ̂ le system 

(2) byte offset into bl�k 

} 

ĸ) bytR of 1/0 in bl�k 
(4) rMd ahMd bl�k num;r 

calculate l�ical bl�k number in l̂L from byte offset; 
calculate start byte in bl� « l/0; t• output 2 •t 
Alculate num:r of bytT to copy to ؇ t• out�t 3 •t 
check U rMd-ahNd applicable, mark in�e; t• output 4 •t 
determine level of indirection; 
while (not at ne+qary level of indirOtion) 
{ 

} 

Cte index into in�e or indirOt bl�k from 
logiAl block num;r in _le; 

get disk block number from inode or indirect bl�k; 
ԑ  ̡ bu\er from previous disk read, if any (algorithm brelse); 
if ļ We lUels of indt) 

retu¡ (bl�k num:r); 
read indirect dvk bl�k (algorithm ɘ; 
adjust l�iBl bl�k number in ^le according to level of indirection; 

Fi�re 4.8. Conversion of Byte OBset to Block Num!r in File System 

90� in the Cle. If a pr̀ ess wants to a(ss byte offset 350,�0 in the Dle, it must 
acc=s a double indirect block, number 9156 in the Egure. Since an indir:t block 
has rbm for 256 bl̀ k num"rs, the Fst #te a)* via the double indirect 
block is byte number 172,384 (256K + 1010; byte num!r 350,0� in a file is 
therefore byte number 77,616 of the double indirect block. Since 7ch single 
indirect block acc=ses 256K bytes, byte number 350,�0 must � in the Otb single 
indirect bl_k of tbe double indirect bl̀ k - bl_k num!r 331. Sin, 8ch dir; 
bl_k in a single indirect block contains 1 K byt=, byte number 77,616 of a single 
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indirect block ts m the 75th direct bl"k in the single indirect bl"k - block 
number 3333. Finally, byte number 350,�0 in the Äe is at byte num¨r 816 in 
block 3333. 

Examining Figure 4.9 more cläely. several block entries in the inÞe are o. 
m±ning that the logical block entri¶ contain no data. This happens if no põs 
ever wrote data into the Àle at any byte àáts corrAponding to those blocks and 
hen­ the block numbers remain at their initial value. 0. No disk space � wasted 
for such bl"ks. Pµses can 5use such a bl"k layout in a Åe by using the /seek 
and w�te system 5lls. as dBcriª in the next chapter. É next chaptµ β 
dBcribA how the keóel takB «re of re˼  system ̻Ѥ that acass such bl"ks. 

The conversion of a large byte offset. ærticularly one that is refereÙed via the 
triple iÚirect block. is an arduous proceure that could require the kernel to ac®ss 
thrf disk blocks in addition to the iÛe and data bl"k. Even if the keôl Ánds 
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the bl�ks in the buffer cache, the �eration is still ex�nsive, Ecause the ke«l 
must make multiple requests of the buder Nche and may have to sleep awaiting 
l�ked buders. How effective is the algorithm in practiP? That de�nds on how 
the system is used and whether the user Rmmunity and job mix are such that the 
kernel aIses large fles or small eles more frequently. It has Hen oJerv[ 
[Mullender 84], however, that �st eles on UNIX systems contain l]s than lOK 
bytes, and many contain less than lK bytes!' Since IOK bytes of a ele are stored ύ 
direct bl�ks, m�t ele data × E acc^sed with one disk aO^s. Ȗ in spite of ׇ 
fact that acc^sing large eles is an expensive o�ration, acPssing common�ized 
eles is fast. 

Two extensions to the in�e structure just described attempt to take advantage 
of fle size characteristics. A major principle in the 4.2 �D ele system 
implementation [McKusick 84) ½ that the more data the kernel Nn acc]s on the 
disk in a single �ration, the faster fle aIs bZm .̂ That argues for having 
larger logical disk bl�ks, and the ,rkeley implementation allows logiNl disk 
bl�ks of 4K or 8K bytes. But having larger bl�k sizes on disk i�r̢ bl�k 
fragmentation, leaving large portions of disk spaP unused. For instanP, if the 
logiNl bl�k size is 8K byt], then a ele of size 12K byt_ uses 1 complete bloQ 
and half of a sYond block. The other half of the second block (4K bytes) is 
wast\; no other ele can use the space for data storage. If the sizes of el_ are 
such that the numFr of byt  ̂ in the last bl�k of a ele is uniformly distribut[, 
then the average wasted space is half a block per ele; the amount of wasted ʆР 
s�ce can G as high as 45% for a fle system with logiNl bl�ks of size 4K byt̂  
[McKusick 84]. The ,rkeley implementation remedi_ the situation by allocating 
a bl�k fragment to contain the last data in a he. One disk bl�k can contain 
fragments Flonging to several fles. An exercise in Chapter 5 explores some details 
of the implementation. 

The ±nd extension to the classic in�e structure described here is to store ie 
data in the in�e (see [Mullender 84]). By expanding the in�e to �cu  an 
entire disk block, a small portion of the bl�k can be us\ for the in�e structuª 
and the remainder of the bl�k Nn store the entire ele, in many Ns], or the ̵ 
of a fle otherwise. The main advantage is that only one disk acc]s is necessary to 
get the ḯ  and its data if the gle ets in the in�e block. 

I. For a sample ҋ 19,978 �&, Mull�er and Tannen�um say that a\roximately 85% Ҋ the 1l+ 
were small* than 8K bytes and that 48% were smaller than I K byt,. Although th. Zcentag- 
will vary ͻ Ғ iQFtiW ʞ ׈ n/t, they arc repr.ntative of many ɹȰ systems. 
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4.3 ®¬Oµ 

Recall from Chapter 1 that directoric are the jles that give the ne system its 
hierarchiVl structure; they play an im�rtant role in conversion of a ne name to 
an in�e numSr. A directory is a jle whose data is a sequence of entric, each 
consisting of an inode number a� the name of a kle containb in the directory. A 
path name is a null terminated character string divided into se�rate components 
by the slash ("/") character. Each Wmponent except the last must be the na� of 
a direct�y, but the last com�nent may S a non-directory jle. UNIX System V 
restricts com�nent namd to a maximum of 14 characters; with a 2 byte entry b 
the in�e numSr, the size of a directory entry is 16 bytc. 

Byte Gfset In�e NumSr File Names 
in Directory (2 bytes) 

0 83 
16 2 .. 
32 1798 in it 
ʥ 1276 fsck 
ʴ 85 clri 
80 1268 motd 
96 1799 �unt 

1 1 2  88 mkn� 
128 2114 �sswd 
144 1717 umount 
1 ʰ  1851 chaklist 
176 92 fsdblb 
192 84 con jg 
208 1 432 getty 
224 0 crash 
240 95 Ѻ 
256 188 inittab 

Fi1ure 4.10. Direct�y Layout for /etc 

Figure 4.10 depicts the layout of the diratory ••etc". Every directory contains 
the jle namc dot and dot-dot ("." and " .. ") whose inode numbers are those of the 
directory and its �rent directory, respectively. The inode number of"." in "/etc" 
is l�ted at offset 0 in the lle, and its value is 83. The in�e numSr of " .. " is 
locatb at oiset 16, and its value is 2. =ory entries may S empty, indiVted 
by an in�e number of 0. For i�$�, the entry at addrcs 224 in "/etc" is 
empty, although it once Xntained an entry for a kle named .. crash". É program 
mkfs initializes a mle system � that "." and " .. " of the r�t directory have the r�t 
in�e numSr of the jle system. 
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The kernel storc data for a directory just as it stores data for an ordinary Âle, 
using the inße structure a× levels of dir't and indirect blFks. PrřŚ may 
r±d directories in the same way they read regular #les, but the keèel r¸v· 
exclusive right to write a diratory, thus insuring its correct structure. The acc¹s 
permissiàs of a directory have the following meaning: r2d permission on a 
directory allows a pr�s to read a directory; write ãrmission allows a prÛs � 
create new directory entri� or reÓve old on� (via the creat, mknod, link, aL 
unlink system calls), thereby altering the contents of the directory; àte 
permission allows a äs to search the directory for a Ãle name (it is meaninglbs 
to execute a directory). Exercise 4.6 explor� the difference ¦tw¶n reading and 
searching a dir²tory. 

4.4 CONVERSION OF A PAm N�E TO AN INODE 

The initial ac¨ss to a #le is by its path name, as in the open, chdir (change 
dir'tory), or link system calls. Because the keéel works inteêally with inÞb 
rather than with path names, it converts the mth names to in8es to acc�s #les. 
The algorithm namei nrs� the path name one comGnent at a time, converting 
2ch comGnent into an inode ¤sed on its name and the directory being searched, 
and »entually retuë the inode of the input path name (figure 4.11).  

Recall from Chapter 2 that every prF�s is associat́  with <resides in) a 
current directory; the u area contains a Ginter to the current directory in8e. The 
current directory of the #rst pro©s in the system, pƂs 0, H the rát dir'tly. 
The current dir³ of every other prÙess starts out as the current dir'tory of iî 
mrent prF�s at the time it was created Ðe S'tion 5.10). �ses change their 
current directory by executing the chdir (change dir'tory) system §ll. All nth 
name s2rchc start from the current directory of the p6s unl�s the path name 
starts with the slash character, signifying that the s2rch should start from the ʂʃ 
directory. In either �, the kernel can easily #nd the inode where the path name 
search starts: The current directory is stored iç the prÚs u area, and the system 
rkt in8e � stored in a global variable.2 

Namei uses intermµiate inodes as it parses a path name; call them working 
inodes. The inode where the s2rch starts is the #rst working inode. During each 
iteration of the namei lkp, the kernel makes sure that the working in8e 9 indeed 
that of a diratly. Otherwií, the system would violate the assertion that non­
directory #l� can only ¥ leaf nodes of the #le system tree. The proc�s must Æ 
have permission to search the directory (read permission is insuÁcient) . The sÚr 
ID of the prĹs must match the owner or group ID of the ~le, and execute 

2. A prȜs can e tse tƢ chʄʅ system �l ǋ change î  notion Ȫ the Ƈle systź rȮt. « 
cȕ root ǆ stO ƾ the u q. 
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algorithm namei t• conven 2th name to i{e •t 
input: path name 
output: l�ked in e 
I 

} 

if (path name starts from r¢t) 
w£king i�de - root �! (alg¤ithm iget); 

else 
working in e - Mrrent dir[ indÔ (algorithm iget): 

while (there ռ ɳ  ̨ path name) 
{ 

} 

read next path name Km©nent from input; 
verify that working in e W of dirZtory, ac�ss §rmi¿{ns OK; 
if (working in ode W of r¢t and component is " . .") 

continue; t• loop back to while •t 
read directory (w¤king з by repeat\ use ? algorithms 

b¹p. bread and Ee�; 
if (com©nent matches an entry in directory (working inode)) 
{ 

} 

get inode number for match] �m4nent; 
rel�se working in1e (algorithm iܔt); 
working i�e - indÔ of matclt] com©�nt (algorithm iget); 

else t• Lmªnent not in Rory •t 
retu· (no ж); 

retu  ̧ (working in e); 

Figure 4.11. Algorithm for Conversion of a Path Name to an ln�e 
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�rmission must be granted, or the ee must allow search � all users. Otherwise 
the search fails. 

The kernel d� a linear search of the directory dle mniated with the working 
inode, trying to match the path name component to a directory entry nat. 
Starting at byte offset 0, it converts the byte offset in the directory to the 
appropriate disk block according to algorithm bmap and reads the block using 
algorithm bread. It search� the block for the path name component, treating the 
contents of the block as a sIuen< of directory entries. If it Wnds a match. it 
re=rds the inode number of the matched directory entry, releases the block 
(algorithm brelse) and the old working inode (algorithm iput), and allocates the 
in�e of the matched com�nent (algorithm iget). The new in�e bHous the 
working inode. If the kernel d�s not match the 3th nau with any naus in the 
bl�k, it releases the block, adjusts the byte offset by the num7r of bytJ in a 
block, converts the new offset 
 a disk block num7r (algorithm bmap), and rǹds 
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the next block. The kernel rewats the ëure until it match6 the /th name 
coménent with a dir²tory entry name, or until it reach¶ the end of the directoø. 

For example, supêe a p�s wants to ovn the ¾le "/etc/passwd". When the 
keõl starts /rsing the oe name, it enRunters "/" and gets the system rât 
in-e. Making rXt its current working in-e, the kernel gathers in the string 
"etc". After chkking that the current in-e is that of a dirktory ("/") and tÉt 
the pös has the nÅÆry èmissions to Zarch it, the keòel searches rãt fä a 
¿le whoZ name is "etc": It a¥¦ the data in the rXt directory bl(k by bltk 
and Zarches each block one entry at a time until it lojtes an entry for "etc". � 
Ànding the entry, the keóel rel¿ the in-e for rXt (algorithm iput) and 
all(ates the in-e oØ "etc" (algorithm ig�t) according to the inode number of the 
entry just fånd. After ascertaining that ••etc" is a directory and that it has the 
requisite search vrmissions, the kernel searches "etc" block by bl(k for a 
directory structure entry for the Ble "passwd". Referring to Figure 4.10, it would 
Bnd the entry for ••/sswd" as the ninth entry of the directory. ÿ Ánding it, the 
kernel releases the inode for ••etc", alltat6 the inue for ••/sswd". and - siÞ 
the path name is exhaust³ - retuôs that inode. 

It is natural to question the e¼cieÝy of a linear search of a directory for a çth 
naØ comxnent. Ritchie xints out (±e /ge 19+ of (Ritchie 78b]) that a lißar 
search is e½cient Õ  ̘ it is bounded by the size of the dir±tory. Furthermore, 
Srly UNIX system implementations did not run on machin6 with large memory 
s/ce, > there was hSvy emphasis on simple algorithms such as linear sear̄  
schem6. More complijted search schemes could rµuire a different. more 
Rmplex, directory structure, and would prohbly run more slowly on s×ll 
directori· than the linear search scheme. 

4.5 SUPER B£ 

§ far, this chapter has descri­ the structure of a Âle, aýuming that the iàde 
was previously ®und to a Ble and that the disk bl(ks containing the data were 
alrSdy assign .́ The next sections cover hæ the kernel assigns inodes and disk 
bl(ks. To understand those algorithms, let us examine the structure of the super 
bl(k. 

The suwr bl(k Rnsists of the following Belds: 

• the size of the Ãle system, 
• the number of free blocks in the nle system, 
• a list of free blocks available on the nle system, 
• the index of the next ~e block in the frl block list, 
• the size of the inode list, 
• the number of ħe ino° in the oe system, 
• a list of free in-6 in the Äle system, 
• the ind  ̧of the next frl inode in the free inue list, 
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• lock ×elds for the rËe block and rËe inode lists, 
• a Ùag indiqting that the su,r bl.k has bÌn modiY9. 

The remainder of this chapter will explain the use of the arrays, indicX and l.ks. 
The kernel ,ri�ically writes the su,r block to disk if it had ¿en m�iYed so that 
it is consistent with the data in the Ze system. 

4.6 INODE A¶IGNMENT TO A NEW ʋ 
The kerìl uses algorithm iget 
 allocate a ц in�e, one whñe (2le system 
and) in�e number was previously dÒermined. In algorithm namei for instance, 
the kernel determin� the in�e number by matching a path name com~nent to a 
name in a dirËtory. Another algorithm, ia8Ë, assigns a disk inode to a newly 
crÉt9 2le. 

The 2le system @ntains a linear list of inod�, as mentioned in Chapter 2. An 
inode is free if its ty, 2eld is zero. When a p�s needs a new inode, the kernel 
could thÍretically search the inode list for a free inode. However, such a search 
would K ex,nsive, requiring at least one read o,ration (possibly from disk) for 
every inode. To improve performance, the 2le system super block @ntains an array 
to cache the numϙΨ of free inodÏ in the fвe system. 

Figure 4.12 shows the algorithm iaŅş for assigning new in�es. For rÊsons 
cit9 later, the kernel 2rst veriYX that no other prˬ ˭ have locked accXs 
 the 
su,r bl.k free in�e list. If the list of in�e numbÎs in the super bl.k is not 
empty, the kernel assigns the next in�e number, allït� a free in-@re in�e for 
the newly atigned disk in�e using algorithm iget (reading the in�e from disk if 
n-.ry), copi� the disk in�e 
 the in-core @py, initializ� the 2elds in the 
in�e, and returns the l.k9 in�e. It uòat� the disk in�e 
 indiqte that the 
in�e is now in use: A non-zero Ze tyó Øeld indirtes that the disk in�e is 
auiÚed. In the simplest rse, the keüel has a go� in�e, but race Ãnditions 
exist that necÐsitate more checking, 9 will » explained shortly. ²³ely de2ned, 
a race condition arises when several õs� alter @mmon data structures such 
that the resulting computations depend on the order in which the prðss� 
executed, even though all proÂsses obey9 the l.king prowol. for example, it is 
implied here that a proc�s could get a used iíe. A race condition is related to 
the mutual exclusion problem defined in Chapter 2. exÁpt that locking schem� 
solve the mutual exclusion problem there but may not, by themselv�, solve all race 
conditions. 

If the su,r block list of free inod� is empty, the kernel searches the disk and 
places as many free in�e numKrs 9 ôsible into the super block. The kernel 
read¦ the in�e list on disk, bl.k by bl.k, and Zls the su,r block list { in�e 
¥um¼rs to capacity, remem½ring the highest-num¾r9 in�e that it æҔ. Call 
that inode the "rememKred" inode; it is the last one saved in the su,r bl.k. The 
next time the keýel search� the disk for free inod�, it uses the rememKred in�e 
as its starting ~int, thereby assuring that it wastÑ no time reading disk blocks 
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algorithm iall� 1• al�ate in�e •1 
input: Xle system 

ẗput: l�kI � 
{ 

} 

while ǎυ do�) ( 
if (su°r bl�k l�ked) 
{ 

sleep (event su°r bl�k .mes frK); 
7ntinue; t• while l£p •t ) 

if (in�e list in super block is Q�y) 
{ 

l�k su±r bl�k; 
get remem+red in  f¥ free in�e search; 
sHrch disk Ͳ �ee in�P until super block full, 

or no more frJ inodR (algorithms bread and bre�e); 
unl�k super bl�k; 
wake up (Sent su±r b�k /Q free) ; 
if (H frJ in�es found Z ʇ  ͅ

retÝ Ļ in¡); 
set reŎbered in�e for next free in�e sHrch; 

t• there are in¢ in su²r bl�k in�� lvt •t 
get in�e num-r from su±r bl�k in¡ lut; 
get in�e (alg¦ithm iget); 
if (in�e �t frL aZer all) t• !!! •t ( 

write in�e to disk; 
releaÉ in�e (algorithm iput); 
conÕinue; t• while l£p •t 

t• in�e is frM •t 
initialize in�e; 
write in�e � disk; 
=ent Yle Ë free Į 9unt; 
retu¿ (in �e); 

FigrÚ �2 �gori< for �signing New In5% 
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where no frø inӆΙ should exist. After gathering a frûh set Ӑ free inode 
numbers, it starts the iÔe assignment algorithm from the beginning. WheŎver 
the kernel assigns a disk inIe, it  decremenó the ώe inode cţnt recorded in tЋ 
surr bl�k. 

ą . . . . . . . . .  �m�!Y. . . . . . . . . . "" I 
array 1 

tindex 

Is:�.��;�;:·.�:· r83 I ģ . !·· · · · · · · �ǯ�'L . . . .. . . . . . .... � I 
18 19 20 array ȸ 

findex 

(a) Assigning Fry InIe from Middle of List 

SuŦr Bl�k Free InØe List 

E �-?�: · ·f · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ��, ˞  · · · · · · · · · · • · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·1 
0 · . array 1 

tindex ··�· .• (remembered üӇ) . 
Suŧr

.
Bl�k Free InIe List array 2 I �r .l . . . . . . . . . . . . . . . . . . . . . .  rr� i.��- . . . . . . . . . . . . . .. . . .  l. �7� . . I . . �7-� �.. �7 �I 

0 48 ® � 
index t 

(b) Assigning Free Inode - Super Block List Empty 

Figure 4.13. Two Arrays of Free Inře NumÝrs 



Æ INTERNAL RE*TION OF FIL� 

Consider the two �irs of arrays of free in�e num>rs in Figure 4.13. If the 
list   free in�W in the su¡r bl�k l�ks like the `rst array in Figure 4. J 3(a) 
when the kernel assigns an inode, it deGements the index for the next valid in�e 
number � 1 8  and takes inode num>r L. If the list of frS i�X in the su r 
bl�k looks like tk dt array in Figure 4.13 (b), it wiU notiE that the array is 
empty and search the disk f� frT in�Y, starting from in�e num?r 470, the 
remem@red i�e. When the ke«el alls the super block frS list to D�city, it 
remem@rs the last in�e as the start Sint for the next search of the disk. The 
ke¬el assigns an in�e it just t�k from the disk (num>r 471 in the bgure) and 
continues whatever it was doing. 

algorithm i7e t• inN fr1 •t 
input: 5e system inKe number 
output: none 
( 

} 

increment 6e system free inKe *unt; 
if (super bl)k l)k_) 

return; 
if (inLe list full) 
( 

} 
else 

Ʒ Gnode num$r lĔs than remembered inKe for search) 
Ƹ remem%r0 inMe for \arch - input inLe num&r; 

store inLe num$r in inMe list; 
retuY; 

 = 4.14. Algorithm for FrUing In�e 

The algorithm for frTing an in�e is much simpler. After incrementing the 
total number of available inodZ in the ble system, the kernel checks the l�k Ŭ the 
super block. If l�ked, it av�ds raF conditions by returning immRiately: The 
in�e num>r is not put into the super block, but it can > found on disk and Ƀ 
available for reassignment. If the list is not locked, the kernel checks if it has room 
for more in�e num@rs and, if it does, plaFs the in�e number in the Ust and 
returns. If the list is full, the kernel may not save the newly freR in�e there: It 
comparW the number of the freed inode with that ʚ the remem@red inode. If the 
frSd inode num>r is less than the remem>red i�e num>r, it "remembers" the 
newly fAB inode number, discarding the old remem>red inode number from the 
su¡r block. The i�de 9 not l�t, Ô  ̗ the kernel can cnd it by searching ¸ 
in�e list on disk. The kernel maintai� the su¡r block list such that the last Ɂ 
it dis¡nses from the list is the remem>red in�e. IdQlly, there should �ver be 
free inodW wh�e in�e num>r is less than the remem@red in�e num@r, but 
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535 free in%es 476 475 471 <· .... . E . . . . . F . . . . . . . . . . G . . H . . . . . . . . . . . E . I . E . . . . . . . . . . J . . . . J . . . . . . . . E . . . .. ...  · · · · ·� 
T remembered in%e Ƀ Ɇ ɝ 

(a) Original Su�r BlYk List of Free In%= 
I � . . l . . . .. . . . .. . . . . .. . . . . . . ǉǊ��-� . . . . ... . . . . . . .. . J.•7_6 .l . . •7_s .. [.�7½.1 ' 4 ʦ 5 remem�red in ode . d A m eɍ (b) Free Inode 499 
I =� . . l . . . . . . . . . . . . . . . . . . . . . .  f!� ë . . . . . . . . ... . . . . . .. ¹ _47_6 .1. _47_5 T �7±.1 ' 4 � 5 remembered in%e · d t m ex 

(c) Free In%e 601 
�gu$ 4.15. Placing Frù In%e Numbe¢ into tr Su�r Block 

excepti�s are �sible. 
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Consider two exampl= of fr�ing inodes. If the super block list of free in%= has room for more fr� in%e numbers as in Figure 4.13(a), the kernel pŁcü the inode number on the list, increments the index to the next free inode, a� proceeds. But if the list of free in%es is full as in Figure 4.15, the kernel compares the in�e number it has freed to the rememberø inode number that will start the next disk search. Starting with the frc inode list in Figure 4.1 5 (a), if the ke�el frcs in�e 499, it makes 499 the remembered in%e and evicts number 535 from the frú list. If the kernel then freý in�e numér 601, it d� not change the contents of the 
çe lisL When it later usü up the in� in the suHr blYk frc list, it will search the disk for free in%es starting from in%e num�r 499, and mnd in%es 535 and Ã1 again. 
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Pws A 

Assigns inge I 
from sukr blck 

Sl7n while 
reading infe (a) 

Inode I in core 
k usual activity 

Time 

Proc8s B 

Tries to assign infe 
from sulr bldk 

Super block empty (b) 

Search oØ free 
inf: on disk, 

puts infe I 
in sulr block (c) 

Completes search, 
assigns another inode (d) 

Proc:s C 

Assigns infe I 
from super blek 

I is in $! 

Assign anhher infe (e) 

Figure 4.16. �ce Condition in Assigning Inod8 

The prec5ing paragraph de"ibed the simple � of the algorithms. Nõ 
consider the � where the ke¦el assigns a new infe �d then allo+t8 an inG 
,py for the infe. The algorithm impli9 that the kevel -ld >nd that the Òe 
had alr4dy b7n assigned. AJthough rare, the following scenario shows such a case 
(refer to Figur8 4.16 and 4.17). Consider three process8, A, B, and C, and 
supme that the kernel, acting on &half of prķs ^ 3 assigns inode I but ƕ ˃ 
sl6p 	�e it copi8 the disk inode into the in-core ,py. Algoritluns iget (invokY 

3. × in the last chapter, the term "Ŵs" here will mean ••the ken×l, acting on behalf of a prs." 
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Time 

(a) I I I 1 I . . . . . . . . . . . . . . . . . . . . .  . 

(b) . . . . . . �.�Ɓ!L . . . . . .  . 

(e) 1. ) . . . 1 .. . ( ..... ��.�¿� ..... 1�1 I II 
Fig4.17 ׋. Ra> %dition in Assigning In�es (continuN) 
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by iaŉ) and breƢ (invokO by iget) give �s A ample op�rtunity 
 go to 
sleep. While pr�ess A is aslQp, sup�e prIs B attempts to assign a new in�e 
but discovers that the su�r block list of free inodR is empty. Pr�Rs B searches 
the disk b frP in�R, and sup�e it starts its search for free inodes at an in�e 
number lower than that of the i�de that A is assigning. lt is �ssible for p͸s 
B to Wnd in�e I free on the disk sin? procSs A is stol asleep, and the ker~l d�s 
n� know that the in�e is about to be assignN. Process B, not rMlizing the 
danger, completes its search of the disk, Xlls up the super block with (supposedly) 
free inodR, assigns an inode, and departs from the s@ne. However, inode I is in 
the super block çe list of inode numbers. When process A wakes up, it completes 
the assignment of inode I. Now supp�e proAs C later requests an in�e and 
happens to pick inode I from the su�r block rËe list. When it gets the in-core 
Bpy of the inode, it will Ynd its Zle type set, implying that the in�e was already 
a¦ignΊ. The ke�el checks for this Cdition and, [nding that the in�e has been 
assigned, tries � assign a new one. Writing the u�ated i�de to disk immediately 
after its assignment in iaņŠ makes the chan? of the race smaller, 7cause the \le 
ty� Zeld will mark the in�e in use. 
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Locking the suUr bl�k list of inod  ̧ while reading in a new set from disk 
prevents other race conditions. If the su~r bl�k list were not l�kµ, a prÝs 
could Ond it empty and try � Bpulate it from disk, ƁƂionally sleeping while 
waiting År 1/0 completion. Supçe a sjond process also tried to assign a new 
inTe and found the list empty. It, צo, would try to Bpulate the list from disk. 
At best, the two prƸƹs are dupli¬ting their eNorts and wasting CPU power. At 
worst, rai conditions of the type described in the previous paragraph would ɏ 
more frequent. Similarly, if a process freeing an inTe did not check that the list ̾ 
locked, it ®uld overwrite inTe num!rs already in the frM list while an}h· 
prXs was æpulating it ® disk. Again, the race conditions deóri!d a©e 
would ! more frequent. Although the kernel handles them satisfactorily, system 
performani would suNer. Use of the l�k on the suä block frL list prevents 
such race conditions. 

4.7 ALL5A9ON OF DISK BL¤KS 

When a process writes data � a Âle, the kernel must allocate disk blocks from the 
Ole system fß direct data blocks and, sometimes, for indire° blocks. The ͢ϻ 
system suUr block contains an array that is used to cache the numbers of free dÌ 
blocks in the Ãle system. The utility program mkfs (make Ale system) organiz¼ 
the data blocks of a nle system in a linked list, such that each link of the list is a 
disk ɔâ that ¯ntains an array of Æee disk bl�k num!rs, and one array entry ϣ 
the num!r of the next bl�k of the linked list. Figure 4.18 shows an example μ 
the linked list, where the nrst ɕâ Ϣ the su~r block frL list and later blocks on 
the linked list contain m|e ˤe block numbers. 

When the kernel wants to all�ate a bl�k from a Ale system (algorithm aġĵ, 
Figure 4.19), it all�at@ the next available block in the super block list. Once 
all�ated, the block cannot be reall{ated until it becom¹ frM. If the all�atk 
block is the last available bl�k in the super bl�k cache, the Ñrnel treats it as a 
Binter to a block that contains a list å free bl�ks. It reads the block, Bpulat@ 
the suUr bl�k array with the new list of bl�k num!rs, and then èés to ʮ 
the |iginal bl{k num!r. It allÜt» a buNer for the bl�k and clears the buÀer's 
data (zerà it). The disk bl�k has now !en assigned, and the kernel has a buÁer 
to work with. If the Ole system cÞtains no frM blocks, the calling pr�ess receives 
an error. 

If a process writes a lot of data to a Äle, it repeatedly asks the system for blocks 
to store the data, but the keîel assigns only one block at a time. The program 
mkfs tri@ to organize the original linked list of free block numbers so that block 
num!rs dispensed to a Ale are near each other. This helê performance, bjause it 
rlucº disk seek µme and latency when a pro­ss reads a ÷le s¶uentially. Figure 
4.18 deåcts bl�k numbers in a regular ãttern, pr@umably §sed on the disk 
r}ation spel. Unfortunately, the order of bl�k num!rs on the free bl�k linkk 
lists breaks down with heavy use as põses write Ales and remáe them, ¨auô 
block num!rs enter and ĺ ve the frL list at random. The keïel makes no 
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su²r bl̈ k list 

109 1  103 1� . . . . Y . Z . � . . . . . . . . . . .  
I � I 1" �� 2 1 1  208 205 202 . . .. . . � . . . . . . .  1 1 2  
I � 

2 1 1  � 310 307 304 301 . . . . . . . . . . . . [ \  214 I � 
3 1 0  � Ʉ 406 403 4� 313 

Figu¡ 4.18. Linko List of Frt Disk Bl̈ k NumWrs 

attempt � ޚ� bl̈ k numbers on the free ְ 
The algorithm free for freeing a bl̈ k is the reverse of the one for allªting a 

bl̈ k. If the su³r bl̈ k list is not ϛl, the bl̈ k numWr of the newly frep bl̈ k 
is placed on the su ŕ block list. If, howevv, the suµr block List is full, the newly 
rËed block �mes a link bl#k; the ke2el writes the su+r block list into the 
bl̈ k and writes the bl̈ k to disk. It then placs the block numWr of the newly 
freed block in the su¶r block List: That block numXr is the only memWr ڑ the 
list. 

Figure 4.20 shows a suuence of aŇoc and free o·rations, starting with one 
entry on the su´r block free list. The kernel frts block 949 and places the block 
numYr ¥ the free list. It then all̈ atw a block and removes block numWr 949 
from the free list. Finally, it allocates a block and removw block number 109 from 
the free list. Because the super block ce list is now empty, the kernel replenishes 
the list by copying in the contents of block 109, the next link on the linkp list. 
Figure 4.20(d) shows the full super block list and the next link block, block 21 1 .  

The algorithms for assigning and freeing in¬w and disk bl̈ ks are similar in 
that the kernel uses the su´r bl©k as a cache dntaining indicx of free ̯cy, 
bl̈ k numbers, and inode numYrs. It maintains a linked list of block numWrs 
such that every free bl̈ k numWr in the �le system a¹ in some element of the 
linkq list, but it maintains no such list of free inodes. There are three reasons f­ 
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algjithm alld t• Ele system blg allftUn •t 
input: Fle system num)r 
output: buAer for new bldk 
{ 

while (sumr bldk ldk7) 
sleep (event sumr bldk not ldked): 

reD bldk from sumr bldk Oe list; 
if �7 last blh ¬ Oe list) 
{ 

} 

ldk super bldk; 
r6d bldk just taken from fr8 list (algorithm br6d); 
copy bldk num)rs in bldk into sumr bldk; 
release bldk buDr (algorithm brelse); 
unlek sumr blek; 
ؗϮ up nos (;ent super bldk not ldked); 

get buBer for block removed from super bldk list (algorithm getblk); 
ʿȌ buffer ˮ̴װ; 
decrement total ,unt of free bldks; 
mark super bldk miiEed; 
return buCer; 

Figure 4.19. Algorithm for All\ating Disk Bl\k 

the different treatment. 

1. The kemel can d9ermine whether an in]e is free by insection: If the Ae 
type @eld is clear, the iXde is ˢe. The kerWl needs no other mechanism ס 
d8ri& ˠe inod7. However, it cannot determine whether a bl\k is free 
just by l`king at it. It could not distinguish &tween a bit dttern tEt 
indicates the block is free and data that happened to have that bit dtt6 
Hen+, the kernel requir7 an external meth  ̂ to identify free blocks, and 
traditional implementations have us4 a linked list. 

2. Disk blocks lend themselv7 to the ě of linked lists: A disk bl\k easily 
h_ds large lists of free block numbers. But inodes have no convenient pla, 
for bulk storage of large lists of fr5 in^e numbers. 

3. Users tend to consume disk block resour- mae quickly than they consume 
in^7, so the apparent lag in performance when searching the disk fa free 
in^es is not as critical as it would be for searching � free disk blocks. 
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(a) Original con?guration 

ht k r d 1St 
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(b) AtËr @eing blek num	r 949 
ht k r oc JSt 

. V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 • • • •  
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(c) After a�igning block num"r (949) 

ԭ r dk 1St 

208 205 

341 338 

202 . . . . . . . . . . . . . . S . . . . . . . . . . .  

335 . . ~ . . T . . . . . . . . U . . . . . . . . . . .  

(d) AϚr a�igning block number (1)) 
replenish supr block free list 

1 1 2  

1 1 2 

243 

�gure 4.	. Requ3ting and Fr2ing Disk Blocks 
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The UNIX system supßrts two other /le tyJ: piJ and s=cial fil�. A piÞ, 
sometim� callU a ±fo (for qt-in-\rst-out"), differs frÙ a regular file in that its 
data is transient: Once data is r©d from a pi=, it cannÜ be rªd again. Also, the 
data is r«d in the order that it was written to the pipe, and the system allows Ĉ 
deviation from that order. The kernel stores data in a pi= the same way it stoæs 
data in an ordinary /le, except that it ǜ only the direct bl;ks, not the indirect 
bl;ks. The next chapter will examine the implementation of piJ. 

The last nle ty=s in the UNIX system are sp9ial ·les, including bl;k d±i  
sIcial ^lW and character device sIcial ļ�. �th typY specify devic�, and 
therefore the file inÕ® do nN reference any data. InsteaM the inMe contains ˇ 
numRrs known as the major and minor device numbers. The m�or num� 
indi.tes a device type such as terminal or disk, and the minor number indi�tes 
the unit number of the device. Chaàer 10 examines sp9ial devic� in detail. 

4.9 ��ARY 

The in<e is the data strucîre that ��cribX the attributX of a ]le, including ̉ 
layout of its data on disk. There are two versions of the inode: the disk copy that 
storW the in�e informatiÚ when the ]le is not in use and the in-core copy t¿t 
r9ords in¼ation a�ut active Ees. Algorithms ia�oc and ifree contrØ 
assignmVt of a disk in<e to a »e during the �eat, mkÓ, piá, and uÒiÑ 
system calls (next chapter), and the algoèthms #t and iput Dntrol the allÔtiÛ 
of in-core in<es whV a prgYs acc�ses a /le. Algorithm bmap locates the disk 
blocks of a file, according to a previously supplied byte Ö×et in the /le. Dir9tories 
are Ees that correlate l̂e name Dmponents to inode numbers. Algorithm ǽǨi 
converts /le nam� manipulated by proc�ses to in<es, used internally by the 
k­el. Finally, the keéel controls assignment of new disk bl;ks to a \le using 
algorithms a flÚ and ftee. 

The data structur� dis¡¢ in ʹ chapter Dnsist of linkU lists, hash qu°, 
and linear arrays, and the algorithms that manipulate the data structur� are 
therefore simple. Compli.tions arise due 	 race conditions .used by ¸ 
interactÉn of the algorithms, and the text has indi.ted some of th�e timing 
problems. Neverthel�s, the algorithms are Ñt elaborate and illustrate the 
simplicity of the system design. 

The structur� and algorithms Zplained here are internal to the kernel and aç 
not visible to the user. Referring to the Ýerall system architecture (Figure 2.1), 
the algorithms d�criRd in this chapter gcupy the lower half of the ¹le su�yst¬. 
The nZt chapter examin  ̄ the system .l1s that provide the user interface to the 
Ee system, and it descri�s the upIr half of the ºe su�ystem that invok� the 
internal algorithms ¤� here. 
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4.10 EXERFSES 

l. The C language Wnvention ф࠿ array indiV from 0. Why Ѧ in£e numbers start 
from 1 a� not 0? 

2. If a pr�s sleē  in algorithm igtt when it lnds the in¤e l¢ked in � cache, why 
must it start the l§p again Ԁ the LMg after waking up? 

3. 'riK an algorithm that ࠐ an inö in¥e i input Î u­ate tv 
Ǣǣ®nding disk in£e. 

4. The algorithms igtt and iput ѥ not require the pr̀  ́ excuti¦ level to J raiÀ 
ϭ bl¢k out interº°s. What ѫ this imply'? 

S. Hڨ ҧҨy Tn the l§p fڢ iݐ׿ ϓضΓ in bmap be d'? 

mkdir junk 
for i in 1 2 3 4 5 
do 
echo hello > junk/Si 
d¦e 
ß -  ֧junk 
ß -I junk 
chmod -r junk 
̈́ -Id junk 
ͅ j<k 
̓ -I junk 
U junk 
pwd 
1 -1 
cho • 
cd .. 
chm¤ +r junk 
chm£ -x junk 
͆ junk 
Is -I junk 
U junk 
ch� +x junk 

Z�11re 4.11. Dijerence between Read and Search PΒi§iӓ ̌ Direcẗ if 

6. Excute t§ she� Wmmand script in Figure 4.21. It creates a directory .. junk" and 
creates lve lle in the diݓry. After doing some control Is Xmands, the chmod 
command turns ok read permission f̈  the directory. What happens wun the various 
Is commands are executed now? What happens after changing direct©y into "junk"? 
After restoring read perm�� but removing execute ¡Ôrch) permiÁi¦ from "junk'', 
repeat the experiment. What happe�? Wtt is happening լ the kernel to cause this 
behaviª? 

7. Given the Yrrent structure of a dirctory entry on a System V system, what is the 
maximum numKr of me a lle system can contain? 
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8. UNIX Sysẗ  V aiJows a maximum of 14 characters fi a path name comáent. 
Namei truncat� ͎ש characters in a comÞnent. HÖ should the Wle system ʠ 
resÜe algÒithms be r0�igned to all× arbitrary length comßn«t names? 

9. Supke a ør has a private Øőon of the UNǶ system but chang� it 7 that a path 
na? ¢mât can £sist 2 30 characters; the private version of the oÝating 
system storU the directory entries the qme way that the standard ojrating sút© 
ʍ ex å that the dirStory entri� � 32 byt� Çng inst§d of 16. If the ؅ 
Нׯ׷ ĉ private ͧ system Ǚ a sö sû what wÔld hapÛn in algorithm 
namei when a Ӣs aðñ a ¶e on the private Wle system? 

• 10. CoÍider the algorithm namei ͱ converting a Úth na? into an inAe. Ȋ the զ 
progr�sV, the k®el chRks that the current working inAe is that of a directory. ȷ 
it ãsible for a,=r prÐs to rªove (unlink) the dirTtory? How # the ͆d 
prev¬t this? The next chapter wiiJ ü back to this problem. 

• 1 1 .  D�ign a dirTtory structure that imprÕ� the e³iency of searching for Ùth nam  ̄
by avoiding the Ar ʅh. Consider t  ́tShniques: hashing and n-ary tre�. 

• 12. DVign a scheme that redu¡ Ĉ number of dirRtory searchU Ͱ ĺe nam� by 
caching frequently us0 names. 

• 13. Ideally, a µle system should ŭ contain a free inode whÓe inAe number is less ֮ 
the .. remembered" inεe used by iʕ/є. How is it ksible fÑ this assertion to be 
faló? 

14. The sup­ block ¼ a disk block and ¤tains other information besides the free blÏk 
list, ɂ deЛribed in this chapter. Therefie, the sujr block free list cannot contain Â 
many free bÈk numbers F can be àtentially stored in a disk block on ĉ link0 list 
of free disk blhks. What is the oæimal number 2 Oe blgk numbers that shouÆ be 
stored ό a blgk on the linked list? 

• 15. Ȗ؉s a system imple?ntation that keeps track 2 ʹe disk blÎks with a bit map 
instead of a link0 list of blhks. What µ the advantages and diqdvantages of this 
òheme? 
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SYSTEM CALLS 
FOR THE FILE SYSTEM 

The last chapter d8cri" the internal data structur8 for the >le system and the 
algorithms that manipulate them. This chapter deals with system %lls for the ?le 
system, using the concepts explored in the previous chapter. It starts with system 
calls for accessing existing >les, such as Ţ, read, write, /seek, and cŌ, then 
pr:ents system &lls to create new >l:, namely, creat and mknŢ, and then 
examin9 the system calls that manipulate the inode or that maneuver through the 
>le system: chdir, chrool, chown, chmod, stat, and fstat. It inv9tigat9 more 
advan) system calls: pWe and dup are imnrtant for the implem7tation of pim 
in the shell; mount and uŷount extend the @le system tr5 visible to ࡨ; link and 
unlink change the structure of the >le system hierarchy. Then, it pr87ts the 
notion of >le system abstractions, allowing the suport of various Ce systems as 
long as they conform to standard interfac<. The last s3tion in the chapter covers 
>le system maintenance. The chapter introduces thr.ee kernel data structures: the 
>le table, with one entry allhated for every open4 Ale in the system, the user >le 
descriptor table, with one entry allo(t4 for every >le des*iptor known to a 
process, and the mount table, containing information for every active Ble system. 

Figure 5.1 shows the relationship !tween the syst6 calls and the algorithms 
d;crib4 previously. It claցiæΖ the system calls into վeral 'tegori;, although 
some system calls aplr in more than one category: 
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File System Calls 
F.eturr 

Use of Assign File File File Sys Tree File namei in5_ Attribut_ 1/0 Structure væanipulation ȕ 
oBn stat oBn cr3t link cr3t cr3t chdir unlink kÛod 

chown r3d mount dup chrät mkn5 link chmod write umount piB stat lseek chown mount unlink clåe chm5 umount 
Lower Level File 2tem �rithms 

namei 
iget iput ialld ifr{ alld free bmap 

ɛɜ aÞdatton algonthms 
getblk brelse br3d brÌd a bwrite 

F1uÙe 5.1. File System Calls and Relation to OthÏ Algorithms 

chdir 
chown 

• System calls that return Lle d`criptors for ě in other system %lls; 
• System calls that use the namei algorithm to �rse a path name; 
• System %lls that assign and free in54, using algorithms iallv and Ĩe; 
• System %lls that set or change the attribut_ of a |le; 
• System %lls that do 110 to and from a pds, using algorithms allĶ, frù, 

and the buÒer alleation algorithms; 
• System %lls that change the structure of the ale system; 
• System %lls that allow a pr�s to change its view of the Lle system tree. 

5.1 OP
 

The pÔn system call is the brst step a pr�s must take to acc4s the data in a 
Lle. The syntax for the open system %ll is 

fd - open(�thname, ×ags, m54); 
where pathname is a Óle name. "a$ indi%te the tyB of open (such � for r3ding 
or writing). and m8es give the ale Brmissions ̰ the ale is zing cr3tÍ. The 
pÔn system %ll returns an integer1 %llÎ the user Dle descriptor. Other ble 
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operations, such as r-ding, writing, seeking, dupli�ting the &le dBcriptor, setting 
¾le l/0 parameters, det«mining ļe status, and clming the ¹le, use the ºle 
dAcriptor that the open system �ll returns. 

The kernel s-rchA the »le system for the 'le name Þrameter using algorithm 
namei (s§ Figure 5.2). It ch¤ks permissiÜs for opning the 'le after it finds the 
in-core inke and allÚt4 an ©try in the Áe table for the open _le. The 'le table 
entry contains a ãinter ƛ the inle of the ӗ ¿le and a 'eld that indiZt¬ the 
byte o· in the _le whªe the kernel eð the next read or write to �gin. The 
kernel initializ4 the offset to 0 during the open �ll, m-ning that the initial read 
or write starts at the beginning of a ¼le by default. Alternatively, a ū�s can 
open a &le in write-append mke, in which Zse the kernel initializB the offset � 
the size of the &le. The kernel allocatA ŭ entry in a private table in the prjess u 
area, call¥ the user &le d4criåor table, and not­ the index of this entry. The 
index is the 'le descriptor that is returned to the user. The entry in the user Àle 
table äints to the entry in the glo�l ½le table. 

algorithm Qen 
inputs: ,le name 

ty§ Š Rn 
,le Wrmissions (for cr"t9n type of open) 

output: Aў dΚiptor 

I 

} 

convert ,le naÕ to inOe (algorithm namei); 
if (-le deâ not exist or not p%mitt# access) 

retu^ (error) ; 
allMate ,le table entry for ծ, initialize мunt, oӣ߆t; 
allʖte urr ,le d'iptor entry, rt ointer to ,le table entry; 
if (tyW of oán sX-& truncate ,le) 

fr̈  all ,le ÑÏks (algorithm fr$); 
unlØk(inÛe); 1• lÙk¦ a�ve in namei •t 
return(us% ,le d&criptS); 

Figure S.l. Algorithm for Opening a File 

Suppme a pr�s executB the following �de, opning the 'le .. /etc/ßsswd" 
twice, once read-only and once write-only, and the &le .. ljal" once, for reading and 
writing.2 

I .  AJI system calls return the value -1 if they fail. The return value -1 will not be explicitly 
mentioned when di~u�ing $e syntax of the ssíem calls. 

2. The de7nition of the ڛn system �ll speci8es three parameters (the third is ࡥ for hÙ create 
mfe of omn), but pogrammers usually Ќ hly the 9rst two. h¹ C �pil1 dg not г that 
the num�r of parameters is corr-t. System impl/0tatio] typically pass the 7rst two lramet1s 
and a third .. garbage" param2er (whatever hapn  ̂to � on hÙ stack) to the kezl. The kernel 
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user ble 
d`cri or table 
0 
1 ¹º» 
2 
3 ®°̄± 
4 5 ¯°±² 
6 
7 «¬­® 

Ôle table 

count 
I 

Read 

count 
l Rd-Wrt; 

count 
1 Write 

in5e table 

count 
2 Uetc/æsswd 

count 
1 (leal) 

Fi)9 5.3. Data StructurÐ after Open 

fdl - o�n("/etc/ç£swd", 0 _RDONLY); 
fd2 - o�n(<'lãl'', O_RDWR); 
fd3 - oè("/etc/passwd", O_WRONLY); 

Figure 5.3 shows the relationship ztw{n the in5e table, |le table, and user Lle 
d4criptor data structur4. Each pÔn returns a Õle d4criptor � the preess, and 
the corr`ponding entry in the user Öle d4criptor table éints to a unique entry in 

deâ n= ch� the third @G unl�s the Lond para-ter i5i�t� that it 0t, allowing 
Bogra/rs to enc;e only two para.ters. 
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¼ file 
d®riptor tabl4 

( r� A) 
0 
1 ĸĹĺ 
2 
3 ĵĶķ 
4 Ōō 
5 ŉŊŋ 

0 ĲĳĴ 
l 2ĻļĽ 3ľĿŀŁłŃń 4 ŅņŇň 5 ĤĥĦ 

͓ 

&le table 

ǥt R-d 
1 

countRd 1 ·Wrt 

count 
1 

count 
1 

count 
1 

R-d 

inle table 

count 

3 (/etc/àsswd 

count 
1 

count 
1 

(lo�l) 

(private) 

Figure 5.4. Data Structures after Two PrNg Oân Files 
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the kernel Äle table even though one �le ("/etc/Hsswd") is oðned twi². The Æe 
table ftri< of all instances of an oIn �le Jint to one entry in the in�ore inqe 
table. The pr�s can read or write the �le "/etc/passwd" but only through jle 
d&criptors 3 and 5 in the �gure. The kernel not! the caíbility to rºd or write 
the �le in the �le table entry allpated during the open call. Suppìe a second 
proc!s ex½tes the following ´e. 

fd l - oIn(''/etc/Hsswd", O_RWNLY); 
fd2 � oò("private", O_RWNLY); 

Figure 5.4 shows the relationship biween the appropriate data structures whÓe 
both prpess! (and no others) have the 5l, oïn. Again, ;ch open call rhults in 
allætion of a unique entry in the user 5le d!criptor table and in the kernel �le 
table, but the ÝÓel contains at mët one entry Ұ Çe in the inOre inre table. 

The user 5le d&criptor table entry could conceivably contain the �le oDset fé 
the tsition of the next l/0 operation and Jint dirctly to the inOre inre entry 
for the �le, eliminating the n¿ for a seHrate kernel jle table. The examples 
above show a on¹to-one relationship between user �le descriptor entries and kernel 
5le table entri,. Thomôon not,, howevg, that he implemfted the �le table as a 
separate structure to allow sharing of the oDset tinter °twen several user Èe 
d<criptors (Ųe îge 1943 of [Thomõon 78]). The dup and fork system calls. 
explaind in Sctions 5.13 and 7.1, manipulate the data structur& to allow such 
sharing. 

The �rst three user �le d!cri÷ors (0, l, and 2) are calld the standard input, 
standard output, and standard error �le descriptors. Process, on UNIX systems 
conventionally use the standard input d!criptor to r»d input data, the standard 
output descriptor to write output data, and the standard error d<criptor to write 
errê data (m,sag&). Nothing in the oóating system assum& that th<e �le 
d!criptors are sñial. A group of users could adoö the convention that 5le 
dhcriptors 4, 6, and II are sIcial Åle d!criptors, but counting from 0 (in C) is 
much more natural. Adoption of the convention by all user programs makes it easy 
for them to communicate via pipes, as will ± sen in Chapter 7. Normally, the 
control terminal (see Chaptg 10) serv& 	 standard input, standard output and 
standard error. 

S.l READ 

The syntax of the read system bll is 

number - r;d(fd, buDer, count) 

where fd is the �le dÁriptor return¾ by open, buffer is the addrÀs of a data 
structure in the user prçs that will contain the r¼d data on successful 
completiè of the bll, count ̽ the number of byt, the user wants to r;d, and 
number V the number of byt& actually read. Figure 5.5 depicts the algorithm read 
for r;ding a regular �le. The kernel gis the �le table entry that ³rr!Jnds to 
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algorithm read 
in�t: Д 9le d.!iptor 

addr0s of buOer in user js 
num�r of bytF to read 

output: 7unt of bytE couA into É ߓЯ 
( 

} 

get 4le table entry from É Ve des9iptor; 
ch-k 4le aƷsibility; 
vt srameters in u ar, for or addr0s, byte count, ŀ0 to or. 
get inae from 5le table; 
lnk iYe; 
set byte offset in u area from Rle table offset; 
while (7unt not satisSed) 
( 

} 

coneèt t� offset to disk block (algeithm bmap); 
calculate oPset into bl_k. number of bytes to read; 
if (number of bytes to read is 0) 1• trying to ÓÉ G of Tle •t 

break; t• out of lc •t 
read bֶ k (algorithm breada ՞ §th ÓÉ ahead, algorithm 

bread otherwise); 
coܗ d2t2 from S�tem bࡕࡔ to user 2ѝress; 
uiate u aԩa 6elds ff 7le byte �fªt, read 8nt, 

addr.s � write into user sۀа; 
relĔ b�� t• l̀ ked in bread •t 

unlnk inoe; 
utate 4le table off�t for ؇ read; 
return(total num�r of bytF ě; 

ʕϳԪ 5.5. Algorithm for RAding a File 

8 

the user Wle descriptor, following the �inter in Figure 5.3. It now sets several [/0 
hrameters in the u areü (Figure 5.6), eliminating the neD to hss them as 
function �rameters. SpeciWcally, it ߏ the 1/0 mode to indicate that a rBd is 
being done, a :ag to indicate that the 1/0 will go to user address shce, a count 
Xeld to indicate the number of bytes � read, the target addr/s of the user data 
buffer, and 8nally, an offset Yeld (from the Zle table) to indicate the byte oVsL 
into the Ule where the 1/0 should bFin. After the kernel sets the 1/0 �rameters 
in the u area, it follows the �inter from the Wle table entry to the in�e, l�king 
the in�e .fore it rCds the [le. 

The algorithm now gbs into a lpp until the read is satis8ed. The kGnel 
converts the Xle byte offset into a bl�k number, using algorithm bmap, and it 
notI the byte offset in the bl�k where the 1/0 should /gin and how many bytes 
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mode 
count 
offset 
addrCs 
Jg 
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indicatX read or write 
count ` bytes to r@d Ǣ write 
byte offset in Ile 
target addrDs � copy data, in user or kBel memory 
indi:tes if address is in ʦĦ or keȋel mAory 

Figure S.6. llO Parameters Saved in U Area 

in the bl�k it should read. After reading the block into a buffer, possibly using 
block read ahead (algorithms bread and breada) as will 6 described, it copiU the 
data from the block to the target addre± in the user procUs. It updatU the 1/0 
parameters in the u area according to the number of bytU it read, incrementing the 
ile byte offset and the addrVs in the user prPs where the next data should � 
deliverR, and decrementing the count of bytes it neRs Ĕ read to satisfy the user 
read requVt. If the user request is not satisiR, the kernel repeats the entire cycle, 
converting the ile byte offset to a block num7r, reading the block from disk to a 
system buffer, copying data from the buffer to the user procYs, releasing the buffer, 
and u ating l/0 parameters Â the u area. The cycle completV either when the 
kernel completely satisies the user rSuest, when the ile contains no more data, or 
if the kernel encoun֦ Ո an error in rQding the data from disk or in copying the 
data to user s�ce. The kernel updates the oht in the jle table according to the 
num8r of bytW it actually read; consTuently, succWsive reads of a ile deliver the 
ile data in sequence. The /seek system call (Section 5.6) adjusts the value of the 
ile table offset and changes the order in which a procUs reads or writes a ile. 

#include <fcntl.h> 
�in() ( 

} 

int fd; 
char lilbufl20], bigbuk 1024]; 

fd - o¡n( .. /etc/ajwd", O_RDONLY); 
read (fd, lilbuf, �); 
r@d(fd, big5f, 1024); 
read (fd, lil6f, 20); 

Figure S.7. Sample Program for Reading a File 

Consider the program in Figure 5.7. The open returns a ile descriptor that the 
user assigns to the variable fd and usU in the su9Suent read calls. In the read 
system call, the kernel veriies that the ile descriptor parameter is legal, and that 



5.2 READ 9 

the ês had previously opened the Äe for reading. It stores the valu; &buf. 
20, :d 0 in the u area, �orr#ènding to the address of the user bÿĀr, ֳ byte 
count, and the starting byte offset in the *le. It  lculates that byte oÀset 0 is in 
the Oth block of the jle and retriev; the entry for the Oth blKk in the inode. 
Assuming such a block exists, the keïel r­ds the entire blKk of 1024 byt# into a 
buffer but copi# only 20 bytes to the user address 'buf. It increments the u area 
byte oÁset to 20 and decrements the count of data to read to 0. Since the read has 
been satis*°, the kernel resets the "le table offset to 20, so that subsequent reads 
on the "le descriptor will bgin at byte 20 in the "le, and the system call returns 
the numbr of bytes actually read, 20. 

For the s¯nd read call, the kernel again veri"es that the d;criptor is legal 
and that the prás had opened the "le for reading, 2cause it has no way of 
knowing that the user read requ#t is for the same �le that was determined to 2 
legal during the last read. [t stores in the u area the user addr#s bigbuf, the 
number of bytes the ۚ١s wants to read, 1024, and the starting offset in the ûle, 
20, taken from the "le table. It converts the "le byte offset to the correct disk 
blrk, as above, and reads the block. If the time between read calls is small, 
chanc# are good that the block will be in the buffer cache. But the kernel cannot 
satisfy the read request entirely from the buffer, 2cause only 1�4 out of the 1024 
byth for this r²u³t are in the buffer. ˎ it copies the last 1�4 byt́  from the 
buffer into the user data structure bigbuf and updatµ the ärameters in the u area 
to indicate that the next iteration of the read lãp starts at byte 1024 in the Ãle, 
that the data should 2 copied to byte éition 1004 in bigbuf, and that the num�r 
of bytes to to satisfy the read request is 20. 

The kernel now cycl# to the beginning of the loop in the read algorithm. It 
converts byte offset 1024 to logical block o¿set 1 ,  looks up the se¥nd direct block 
number in the inode, and "nds the correct disk block to read. It reads the block 
from the buffer cache, reading the blKk from disk if it is not in the cache. Finally, 
it copi# 20 byt# from the buffer to the correct addr;s in the user prÞ#s. Before 
l®ving the system call, the kernel sets the offset *eld in the *le table entry to 1044, 
the byte offset that should be aƽƾd next. For the last rē call in the example, 
the keðel prßàs as in the "rst ëd call, except that it starts reading at byte 
1044 in the *le, *nding that value in the offxt "eld in the jle table entry for the 
descriptor. 

The example shows how advantag±us it is for 110 rguests to start on *le 
system block boundaries and to 2 multipl# of the blrk size. Doing J allows the 
kernel to avoid an extra iteration in the � algorithm loop, with the consguent 
expense of a¡#sing the inode to "nd the £rrect block number for the data and 
¤måting with other prochses for aФs to the buffer pool. The standard 1/0 
library was written to hide knowledge of the kernel buffer size from users; its use 
avoids the ærforman¢ çnalties inherent in pr˪ ˫ that nibble at the "le system 
ineÂciently (.e exercix 5.4). 

As the keñel gâs through the read loop, it determines whether a "le is subject 
to read-ahead: if a p³s reads two blocks sequentially, the kernel assumes that 
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all subsequent reads will be sTuential until proven otherwise. During each 
iteration through the l�p, the ke©el saves the next logical block num8r in the in­
core in�e and, during the next iteration, compares the current logical bl�k 
number ē the value previously saved. If they are Tual, the kernel calculatU the 
physical block num8r for read-ahead and saves its value in the u area for use in 
the breada algorithm. Of course, if a pr�ess d� not read to the end of a block, 
the keªel d�s not invoke read-ahead for the next bl�k. 

Re?ll from Figure 4.9 that it is �sible for some block num9 in an inode or 
in indirect blocks to have the value 0, even though later blocks have nonzero value. 
If a process attempts to read data from such a bl�k, the kernel satis`es the requUt 
by all�ating an arbitrary bu_r in the read l�p, clearing its Bntents to 0, a� 
Bpying it to the user address. This case is different from the Ú where a procXs 
encounters the end of a ale, mNning that no data was ever written to any location 
8yond the current �int. When enBuntering end of ale, tbe kernel returns È 
data to the pr�s Ńe exercise 5.1). 

When a pr�ess invokU the read system call, the kernel locks the inode for the 
duration of the call. Afterwards, it could go to sleep rNding a buffer associatQ 
with data or with indirect blocks of the inode. If another procVs were allowed to 
change the ale while the ft prƴs was sleeping, read Buld return inconsistent 
data. For example, a pr�ess may read several blocks of a de; if it slept while 
reading the brst block and a second pȓs were to write the other blocks, the 
returned data would c�tain a mixture of old and new data. Hence, the in�e ̼ 
left l�ked for the duration of the read ɪl, affording the procVs a consistent view 
of the ale as it existed at the start of the call. 

The kernel can preempt a reading pr�s between system ?lls in user mode 
and schedule other pr�Wses to run. Sin@ the inode is unl�ked at the end of a 
system ?ll, nothing prevents other prRS from a=sing the de and changing 
its Cntents. It would be unfair for the system to kRp an in�e l�ked from the 
time a procVs opened the ee until it closed the `le, because one process could 
kSp a cle open and thus prevent other processU from ever accUsing it. If the ale 
was "/etc/�sswd", used by the login prPs to check a user's password, then one 
malicious (or, �rha , just errant) user could prevent all other users from logging 
in. To avoid such problems, the kernel unlocks the inode at the end of each system 
call that uses it. If another process changes the ale between the two read system 
calls by the arst ès, the `rst pɂs may read unex�ted data, but the ke«el 
data structures are consistent. 

For example, suppose the kernel executes the two procUsW in Figure 5.8 
concurrently. Assuming both ҿİı Bmplete their open calls before either one 
starts its read or write calls, the ke¬el could exPute ċ read and write calls in 
any of six sequenAs: readl, readl, writel, writel, or readl, write], readl, writel, 
or readl, wtitel, write2, read2, and ʚ on. The data that procUs A reads depends 
on the order that the system executV the system calls of the two pr�esses; the 
system d�s not guarantee that the data in the ale remains the same after opening 
the ale. Use of the 4le and record locking feature (SOtion 5.4) allows a proAss � 
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#include <fêtl.h> 
I* pͶs A *I 
mainO 
{ 

} 

int fd; 
char buft512}; 
fd - open("/etc/passwd", 0 _RDONL Y); 
read(fd, buf, sizXf(buf));  /*  readl */ 
read(fd, buf, sizôf(buf)); /* read2 */ 

I* ܀s 8 */ 
mainO 
( 

int fd, i; 
char buft512}; 
for (i - 0; i < sizXf(buO; i++) 

buftil - 'a'; 
fd - oĥn( .. /etc/passwd", O_WRONLY); 
write(fd, buf, sizXf(buf));  /* writel */ 
wri#(fd, buf, sւf(bufǂ; /* wԵtă2 */ 

̝u¡ 5.8. A Reader and a Writer P_(s 

guarantó 5le consistency while it has a 5le Ţ. 

t�l 

Finally, the program in Figure 5.9 shows how a proDss can oÔn a 5le more 
than onD and read it via di[erent 5le d*criptors. The kernel manipulatö the 5le 
table oýsets associated with the two Āle descriptors inde=ndently, and hence, the 
arrays bufl and bu¦ should å identical when the pĭs cĠpletes, assuming no 
other pr�s writes ''/etc/passwd" in the meantime. 

5.3 WRITE 

The syntax for the write system call is 

number = write(fd, bu[er, count); 

where the meaning of the variabl� fd, buffer, count, and number are the same as 
they are for the read system call. The algorithm for writing a regular 5le is similar 
to that for reading a regular �le. However, Я the �le dğ not contain a block that 
corrYĦnds to the byte oþset to be written, the keĬel allĚt* a new block using 
algorithm alloc and assigns the blęk numær to the correct ħition in the inode's 
table of contents. If the byte o[set � that of an indirect bl7k, the kernel may 
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#include <cÔtl.h> 
main() 
( 

int fd 1 ,  fd2; 
char bufl[512], buf2[512]; 

fdl - oin("/etc/passwd", O_R~NLY) ; 
fd2 - oin("/óc/passwd", O_RÏNLY) ; 
read(fdl, bufl, sizeof(bufl)); 
read (fd2, buf2, sizeof(buf2)); 

Figure 5.9. RNding a File via Two File ,scriptors 

have � all�ate several blocks for use as indirect bl�ks and data bl�ks. The 
in�e is l�ked for the duration of the write, @cause the ke�el may change the 
in�e when allocating new bl�ks; allowing other �sS aƵs to the _le could 
corrupt the in�e if several p΀΁s allocate bl�ks simultaneously for the same 
byte offsets. When the write ý complete, the kernel updates the _le size entry in 
the inode if the `le has grown larger. 

For example, supp�e a procTs writes byte number 10,240 to a _le, the 
highUt-numbered byte yet written to the ale. When acEsing the byte in the ale 
using algorithm bmap, the pel will _nd not only that the _le d� not contai.n a 
block for that byte but also that it d� not Gntain the necessary indirect bl�k. It 
assigns a disk block for the indirect block and writS the bl�k number in the in­
core inode. Then it assigns a disk block for the data bl�k and writS its block 
number into the `rst �ition in the newly assigned indirect block. 

The kernel goS through an internal loop, as in the read algorithm, writing one 
block to disk during each iteration. During each iteration, it determinS whether it 
will write the entire bl�k or only part of it. If it writes only �rt of a bl�k, it 
must _rst read the bl�k from disk J as not to overwrite the parts that will remain 
the same, but if it writes the whole bl�k, it need not read the bl�k, since it will 
overwrite its previous contents anyway. The write procRds block by bl�k, but the 
kernel usS a delayed write �ection 3.4) to write the data to disk, caching it in 
case another pr4s should read or write it soon and avoiding extra disk operatio~. 
,layQ write is probably m�t effective for pi�, @cause another pr�s is 
reading the pi� and removing its data �ection 5.12). But even for regular `lU, 
delayed write is effOtive if the ale ; creatP tem�rarily and will @ read s�n. 
For example, many programs, such as editors and mail, create tem�rary alS in 
the directory "/tmp" and quickly remove them. Use of delayed write can rPuD 
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the number of disk writc for tem®rary vlc. 

5.4 FlLE AND RECORD L+ING 

The original UN IX system develo­d by Thom³on and Ritchie did not have î 
inte½al mechanism by which a p�s could insure exclusive aƳs to a wle. A 
l¢king mechanism was consider  ̂ unnȅȆry Y', as Ritchie notd, "we are 
not faced with large, single-vle database maintain_ by inde¬ndent pr¥É" 
(see [Ritchie 81)). To make the �IX system more attractive to commercial uÆrs 
with database applications, System V now contains wle and ݄ݍ l£king 
m[hanisms. File locking is the capability to prevent other pr¥sses from reading 
or writing any part of an entire xle, and r]ord l¤king is the ca©bility to prevent 
other pr¤/0 from reading or w¼ting particular r[ords (parts of a xle ;twan 
«rticular byte otts). Exercise 5.9 explores the implementation of wle and r\ord 
locking. 

5.5 ADJUSTING THE POSITION OF FILE 1/0 - lSEEK 

The ordinary use of read and write system Flls providf sequential accgs to a yle, 
but prcÔsses can use the /seek system call to ¯sition the l/0 and allow random 
acIs to a vle. The syntax for the system Ell is 

±ition - lseek(fd, orset, referenH); 

where fd is the zle descriptor identifying the zle, offset is a byte offÇt, and 
reference indicates whether offset should ; Jnsidered ~om the ;ginning of the 
vle, from the current °ition of the read/write osset, or from the end of the {le. 
The retu¾ value, position, is the byte offset where the next read or write will start. 
In the program in Figure 5. 10, � example, a pr¢eÈ opens a vle, reads a byte, 
then invokes /seek to advance the |le table offset value by 1023 (with refereŔe 1), 
and l¦². Thus, the program reads every 1024th byte of the zle. If the value of 
reference is 0, the kernel seeks from the <�nning of the zle, and if its value is 2, 
the kernel seeks <yond the end of the vle. The /seek system call has nothing to do 
with the s̀ k o­ration that ±itions a disk arm over a ªrticular disk s[tor. To 
implement /seek, the kernel simply adjusts the offset value in the vle table; 
subsbuent read or write system calls use the xle table offset as their starting byte 
out. 

5.6 C�E 

A pr¢eÈ cl§es an open }le when it no longer wants to access it. The syntax fot 
the close system Gll is 
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cl�e(fd); 

SYSTEM Üùú FOR EE FILE SYS�M 

#i�lude <fcntl.h> 
main(argc, argv) 

} 

int argc; 
char •argv[}; 

int fd, skval; 
char � 

if (argc !- 2) 
]itO; 

fd - ¨n(argv[l), O_ROONLY); 
if (fd - -1) 

exitO; 
while ((skval - \d(fd, &c, I)) - - I) 
( 

} 

printf("char %c\n", c); 
sS - lsee�(fd, 1023L, 1); 
printf("new sYk val %d\n", skvaO; 

uȎ 5.10. Program with 7ek System Call 

where fd is the ale descriptor for the open ble. The kernel d�s the close o�ration 
by manipulating the cle descriptor and the corresponding ble table and inode table 
entries. If the reference count of the dle table entry is greater than 1 because   
dup or fork �lls, then other user cle dZcriptors reference the cle table entry, x 
will be sXn; the kernel dWrements the count and the close completes. If the cle 
table ref�rence count is 1 ,  the kernel freÐ the entry and releases the in-	re in�e 
originally allocated in the open system call (algorithm iput). If other pr�� still 
referenM the in�e, the ke�el decrements the in�e reference count but leav� it 
all�ted; otherwise, the inode is frX for reall�ation �ause its reference count is 
0. When the close system call complet[, the user cle dZcriptor table entry is 
empty. Attempts by the pr�s to use that cle dZcriptor result in an error until 
the ble d\criptor is reassigned as a rZult of another system call. When a prĵs 
ditê the kernel examines its active user ele descriptors and internally closes each 
one. HenM, no pr�ss can keep a ale o�n after it terminatZ. 

For example, FigǕ 5.11  shows the relevant table entries of Figure 5.4, after 
the sWond process closes its ales. The entries for cle descriptors 3 and 4 in the 
Ǜ fle dZcriptor table are empty. The Nunt gelds of the hle table entries are 
now 0, and the entriZ are empty. The inode referenM count for the ulp 
"/etc/pa£wd" and "private" are also decremented. The in�e entry for "private" 
is on the free list Iause its reference count is 0, but its entry is not empty. If 
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another process ac͈s͉ the Qle "private" while the inode is still on the fr¿ list, 
the kernel will reclaim the inode, as explained in Section 4.1.2. 

5.7 FILE CREATION 

The oөn system call gives a pr�s ˷s˸ to an existing Qle, but the creat system 
nll creatP a new Ële in the system. The syntax for the creat system call is 

fd - creat(îthname, m~es) ; 
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where the variabl+ pathname, mÔ, and fd mean the same as they do in the 
o¡n system call. If no such ;le previously existed, the keđel creat½ a new ;le 
with the spGiÅH name and ćrmission modb; ̯ the Æle already existed, the keē 
truncatc the &le (releasc all existing data bl7ks and դ׮ the Çle size to O) subj̧ t 
to suitable Èle aąs Ĉrmissions.3 Figure 5.12 shows the algorithm for Éle 
cration. 

algorithm cr%l 
input: 1e name 

UrmissiO settings 
Qtput: -le d'�iptor ( 

} 

get inLe fP 1e name (algorithm namei); 
π (.le already exists) ( 

} 

if (not Vrmitted ȵȶs) 
{ 

} 
release inode (algorithm iput); 
return (error); 

Ď 1• .le dM not ēst آ •t ( 

} 

acign fr& inode frN -le system (algorithm iallK); 
create úw directory entry in parent directory: include 

new /le name aG newly assigHd ināe number; 

allocate -le table entry for inLe, initialize cRnt; 
if (0le did exist at time of create) 

free all /le blocks (algorithm free); 
unlKk (in Le); 
return(user 0le d(iptor); 

Figure S.ll. Algorithm for Creating a File 

The kernel srses the path name using algorithm namei, following the 
algorithm literally while srsing directory names. However, when it arrives at the 
last °mĉnent of the Tth name, namely, the ;le name that it will create, namei 

3. The open syst� 
ll sp��es two Óĺ, O_CREAT (��te) and O_TRUNC (trun�te): If a pr9s 
sAi�es the 0 _CREAT �ag on an open and the �le ! nX exist, t� kernel will �eate the �le. If 
the �le already exists, it will not � t@n
ted unl�s the 0 _TRUNC �ag is also set. 
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notes the byte offset of the �rst empty directory slot in the directory and saves the 
offČt in the u area . If the kernel dû not �nd the path name component in the 
directory, it will eventually write the name into the empty slot just found. If the 
directory has no empty slots, the kernel rememÒrs the offset of the end of the 
directory and creates a new slot there. It ̄ remembers the in|e of the directory 
King searched in its u area and keeps the inode l{ked; the dirMtory will KÔme 
the ÿrent directory of the new �le. The kećel does not write the new �le name 
into the dirMtory yet, so that it has los to undo in event of later errors. It chMks 
that the directory allows the pr�s write (rmission: Be@use a pr�s will write 
the directory as a r.ult of the creal @ll, write (rmission for a dirmtory means 
that pr�ses are allowed to create �l. in the directory. 

Assuming no �le by the given name prÛiously existed, the kernel assigns an 
inVe for the new �le, using algorithm ialloc <sntion 4.6). It then writes the new 
�le name component and the inode number of the newly allo@ted inode in the 
~rent directory, at the byte oßet saved in the u area. Afterwards, it releases the 
inode of the parent directory, having held it from the time it searched the directory 
for the àle name. The ~rent directory now cütains the name of the new ále and 
its inode number. The kernel writes the newly allocated inode to disk (algorithm 
bwrite) Kfore it writes the directory with the new name 	 disk. If the system 
crashes �tw
n the write operations ӹ the inùe and the directory, there will � 

an all{at× in|e that is not referencØ by any path name in the system but the 
system will function normally. lf, on the other hand, the directory were written 
before the newly allocated inúe and the system crashed in the middle, the ple 
system would contain a Āth name that referrÙ to a bad inode. <See Smtion 
5.16.1 for more detail.) 

If the given �le alrldy existed before the creat, the keĈel �nds its inVe while 
slrching for the �le name. The old �le must allow write (rmiĎion for a pr÷s 
to crÕte a "new" 7le by the same name, Óuč the kernel chango the ple 
contents during the creat call: It truncates the 7le, freeing all its data blocks using 
algorithm free, � that the �le lýks like a newly created 7le. However, the owner 
and (rmission modes of the 7le are the same as they were for the original âle: 
The kernel d}s not reassign ownership to the owner of the pröss, and it ignores 
the (rmission mV. s(ci7ed by the prõÚs. Finally, the kernel d}s not chÖk 
that the parent directory of the existing �le allows write permission, because it will 
not change the directory contents. 

The creat system call proceeds according to the same algorithm as the Ӗn 
system call. The kernel allocat. an entry in the ãle table for the created �le � 
that the process can write the �le, allo@tes an entry in the user �le descriptor 
table, and eventually returns the index to the latter entry as the user äle d.criptor. 

5.8 CREATION OF SPEOAL ´L  ̄

The system call mkn� creates s(cial �l. in the system, including named pi(s, 
device �les, and dirntories. It ĳ similar to creal in that the kernel allocates an 
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inFe for the Ŀle. The syntax of the mknŘd system call is mkn�(pathname, tyÃ and permiËions, dev) where pathname is the name of the nFe to ğ creat=. є and Ŀrmissions give the nFe type (directory, for example) and acc~s Ãrmissions for the new Ale � ʵ creat=, and dú sŴii~ the major and minů device num�rs for bl¿k aù character special �l} (Chapter I 0). Figure 5.13 depicts the algorithm mkn  ˛ making a new nFe. 
algorithm ŝke new nqe 
inputs: n%e (̧ e ΀  ͢

re type 
Órmissions 
major, minor device num:r (for blFk, character sp°ial ql³) 

output: none { 

} 

if (new node not named pipe and uxr not suÔr user) 
return(error); 

get inode of parent of new node (algorithm namei); 
if (new n%e alrCdy ̔ ё) 
{ 

} 

release parent inÐe (algorithm iput); 
retum(²ror); 

aâign free in%e from re system for ů n%e (alºrithm iaiJV); 
¬eate new directory entry in Òrent directory: include new n%e 

ũ and newly assigned in%e num§r; 
relCse parnt directory in%e (algorithm iÖt); 
if (new n%e » blVk or character sÕ ¶le) write měor, �or num:ß into in%e strulure; 
relCse new nÁe inÁe (algorithm iput); 

FiÙÚ 5.13. Algorithm 
 Making New N�e 
The kernel search~ the ŀle system for the Ale name it is aģut to create. If the ile does not yet exist, the kernel assigns a new inode on the disk and writes the new Ale name and inode number into the parent directory. It sets the Ale type �eld ϋ 

the in�e to indicate that the Ale tyÄ M a piÄ, directory or special Ale. Finally, if the Łle is a character special or block special device �le, it writes the major a+ minor device numbers into the in�e. If the mknod call is creating a directory nFe, the nFe will exist after the system call completes but its cŭtents will Ġ in the wrong format (there are no directory entries for "." and " .. "). Exercise 5.33 considers the other steŸ ne=ed to put a directory into the correct format. 
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algorithm change directory 
input: new dirĈtoޛ name 
output: }| 
{ 

} 

get in|e for ؆ directory naÝ (algorithm namei); 
if (inre }t that of dirKtory or prٛ s �t ïrmitted a±s to Éle) 
I 

} 
relć in|e (algorithm iput); 
retu� (error); 

unl8k in9e; 
relć "old" current directìy iåde (algorithm iput); 
place new iæe into ¶rrent dir¿ slot in u area; 

�gure 5.14. Algorithm for Changing Current Directory 

5.9 CHANGE DIRECI'ORY AND CHANGE ROOT 
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When the system is first booted, pr{s 0 mak> the file system root its current 
directory during initialization. It execut> the algorithm iget on the r�t in~e, 
saves it in the u area as its current directory, and releas? the in~e lyk. When a 
new przess is created via the fork system call, the new pr{s inherits the current 
directory of the old pry>s in its u area, and the kernel increments the in:e 
reference count accordingly. 

The algorithm chdir (Figure 5.14) chang? the current directory of a process. 
The syntax for the chdir system call is 

chdir(pathname); 

where pathname is the dir:t�y that b<m? the new current directory of the 
prٝ s. The kernel parses the name of the target directory using algorithm namei 
and checks that the target Ge is a dir;tory and that the pr�s owner has ac0ss 
permission to the directory. It releas? the lzk to the new in}e )t kee� the 
inode allocat= and its reference 1unt incremented, releases the inode of the old 
current dir;tory (algorithm iput) stored in the u area, and stor> the new inode in 
the u area. After a prٟ s changes its current directory, algorithm name/ us> the 
inode for the start directory to search oØ all path nam@ that do not begin from 
r�t. After execution of the chdir system call, the inode reference count of the new 
directory is at least one, and the in~e reference c�nt of the previous current 
directory may be 0. In this res�ct, chdir is similar to the oßn system call, 
because (th system calls access a Êle and leave i  in~e allyated. The in~e 
allo/ted during the chdir system ̀l is released only when the proc>s executA 
another chdir �ll or when it exits. 
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A pr0s usually usn tbe global xle system r ẗ for aЈ path namo starting 
with "/". The kernel contains a gloZl variable that īnts to the in¥e of the 
global r ẗ, all¡ated by iget when the system is ^oted. Procsses can change t�r 
notion of the yle system r¨t Ѵ the chroot system call. This is useful if a ʭr 
wants to simulate the usual zle system hierarchy and run processo there. Its 
syntax is 

chr¨t (pathname); 

where pathname is the directory that the kernel subsequently treats as the process's 
r̈ t dirmtory. When executing the chroot system call, the ke¶el follows the same 
algorithm as for changing the current directory. It storp the new r ẗ in¥e in the 
pԆ u aPa, unl¡king the in¥e on completion of the system call. However, 
since the default r̈ t for the kernel is stored in a global variable, it d¦s not release 
the in¥e of the old r̈ t automatically, but only if it or an ancotor procos had 
executed the chroot system call. The new in¥e is now the logical r ẗ of the zle 
system for the pr¢ess (and all its children), meaning that all path name searchq 
i n  algorithm namei that start from root ("/") start from this inode, and that all 
attempts to use " .. " over the r ẗ will leave the working directory of the process in 
the new r ẗ. A procrs brtows new child pr£esses with its changed r¨t, just Á 
it ]stows them with its current dirmtory. 

5.10 CHANGE OWNER AND CHANGE MODE 

Changing the owner or mode (a�s ¬rmissions) of a xle are o¬rations on the 
inode, not on the zle per se. The syntax of the calls is 

chown(pathname, owner, group) 
chm¥(pathname, m¥e) 

To change the owner of a zle, the kernel converts the xle name to an in¥e using 
algorithm namei. The pr.s owner must [ su­ruser or match that of the ~e 
owner (a pr¢ns cannot give away something that d§s not belong to it). The 
kernel then assigns the new owner and group to the {le, clears the set user and ձ 
group Hags Łe Section 7 .5), and releaso the in¥e via algorithm iput. After the 
change of ownership, the old owner lªes "owner" ads rights to the |le. To 
change the m¥e of a zle, the kernel follows a similar pr¤dure, changing t� 
mode Hags in the inode instead of the owner numbers. 

S.ll STAT AND 6TAT 

The system calls stat and fstat allow prǄǅ to query the status of yln, returning 
information such � the �e ty­, }le owner, accos ®rmissions, xle size, num\r of 
links, in¥e num]r, and xle a=s times. The syntax f© the system calls is 
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stat(pathname, statbujer); 
fstat(fd, statbuker); 

Stat μ �tat Ill  

where pathname is  a lle name, fd is a se d`criptor returned by a previous oŮn 
call, and statbuffer is the addr`s of a data structure in the user pÃs that will 
Ontain the status information of the lle on Pmpletion of the call. The system 
calls simply write the melds of the in®e into statbu.ffer. The program in Figure 
5.33 will illustrate the Æ of stat and fstat. 

5.12 PIP� 

Calls pipe 

Pr© A 

×nnot share piª 
. .. . . . . . . :· . 

. . . . 

Pr© B Pr© C 

Proc D : Proc E 
· .  . . . . . . . . 

�� ÇIÈ PrÔÖs Tr  ̂and Sharing Piµs 

Piµs allow transfer of data @tw_n proNses in a lrst-in-nrst-out manner (FIFO), 
and they also allow synchronization of proJss execution. Their implementation 
allows pr��s to communicate even though they do not know what pr¬­ ų 
on the other end of the pipe. The traditional implementation of pi· uses the ole 
system for data storage. There are two kinds of pi·: named pipes and, for lack 
of a better term, u؊med pipes, which are identical exJpt for the way that a 
process initially accesses them. Pr«sÐs use the open system call for named pipes, 
but the pipe system call to create an unnam] piµ. Afterwards, pr�ses use the 
regular system calls for ples, such as read, write, and close when manipulating 
pi·. Only related pr˨ ,˩ d`cendants of a p³s that issued the pipe Hll, 
can share accas to unnamed pi¸. In Figure 5.15 for example, if p s B 
creates a pipe and then spawns pΎΏ D and E, the three processes share acKss 
to the pipe, but pr«sses A and C do not. However, all pÔňses can acMs a 
named pipe regardlas of their relationship, subj\t to the usual qle permissions. 
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Because unnamed piv are more .mmon, they will % present: Arst. 

5.12.1 Đ Piʣ S̥ Đ ßl 

The syntax for creation of a pir is 

pir(fdptr); 

where fdptr is the zinter to an integer array that will contain the two Ble 
d<criptors for reading and writing the pir. Because the kernel implements piw 
in the Cle system and &cause a pir dp not exist &fore its $, the kernel must 
assign an inode for it 2 creation. It also allocates a pair of user Ale descriptors 
and corresponding Dle table entri; for the pir: one Ale descriptor for reading 
from the pir and the other for writing to the pipe. It us< the Ble table so that the 
interface for the read, write and other system calls is consistent with the interface 
for regular Bles. Ö a r=ult, pr./ do not have to know whether they are 
reading or writing a regular Ble or a pipe. 

al?rithm pis 
in|t: ine 
output: read Ele d/criptor 

write f)e descriptor 
{ 

} 

a�ign new inge from pim 2vi- (al>rithm ialld); 
allfte Fe table +try for r��ing, a t̀h- for writing; 
initialize 7le table entri/ to {nt to new inge; 
alldate user 7le d�i:or for r'ding, a t̀h. for writing, 

ini� � oint � rÏɂtive 6le table entri0; 
ʑt inge ref.en� �unt to 2; 
initialize �unt of in6e r�ders, writers � I ;  

!<e 5.16. Algorithm for Creation of (Unnamed) Pix 

Figure 5.16 shows the algorithm for creating unnamed pip=. The kernel 
assigns an inode for a pir from a Ale system designated the pipe device using 
algorithm iaÉoc. A pipe device is just a Ble system from which the kernel can 
a�ign inodes and data blocks for piy. System administrators specify a pit 
device during system conBguration, and it may be identical to another Ale system. 
While a pir is active, the kernel cannot reassign the pipe inoe and data blnks ˂ 
another Ble. 

The kernel then allnates two Ble table entries for the read and write 
descriptors, r>rctively, and updat= the 'okkeeping information in the in	re 
inoe. Each Ale table entry r9ords bow many instanc; of the pipe are oun for 
reading or writing, initially 1 for each Ble table entry, and the inoe reference 
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count indicatÄ how many timÅ the pipe was "oȏnƸ" initially two one f� 
each Cle table entry. Finally, the inøe records byte offsets in the pi� where the 
next red or write of the pi� ¹l start. Maintaining the byte offsets in the inode 
aJiows convenient FIFO ac�s to the pi� data and differs from regular ÏlÆ where 
the oÎt is maintained in the ile table. Prrs cannot adjust them via the /seek 
system call and I random a²ess UO � a pi� is not �ible. 

5.11.2 Ot a NaJ Pipe 

A named pi� is a Cle whûe semantiµ are the same as thüe of an unnam¿ pi�, 
except that it has a directory entry and is ac³ ́by a path name. Pro4ss� open 
named pi+s in the same way that they open regular Ðl� and, hen_, procȮȯ that 
are not closely related ^n communicate. Named pip� �rmanently exist in the Ñle 
system hierarchy (subject to their remýal by the un5nk system call), but unnamed 
pipes are transient: When άl pro4sses Cnish using the pipe, the kernel reclaims its 
inode. 

The algorithm for opening a named pipe is identical to the algorithm for 
o�ning a regular Òle. However, before completing the system call, the kernel 
increments the r»d or write counts in the inùe, indi±tin� the number of pr'( 
that have the named pit otn for reading or writing. A pro_ss that opens the 
named pi+ for reading will slgp until another prô5s o�ns the namf pi� for 
writing, and vice versa. It mak5 no sense for a pi+ to be o�n for reading if there 
is no ho� for it to receive data; the same is :e for writing. De�nding on 
whether the prqss opens the named pi� for reading or writing, the kernel 
awakens other pr�� that were aslgp, waiting f�r a writer or reader pՆs 
(res+ctively) on the namÀ pipe. 

If a prqss opens a named pipe for reding and a writing pr˂ s exists, the 
oCn l̂l complet�. ʻ if a prös opens a namf pipe with the � delay option, 
the �pen returns immediately, even if there are no writing prrs. But if neither 
condition is true, the procÈs sleeu until a writer pys ?ens the pi�. Similar 
rul5 hold for a pr�s that opens a pi� for writing. 

5.l2.3 R¼ding a+ Writiҗ Pи 
A pipe should be viewÁ as if pro4}es wr-e into one end of the pipe and read 
from the other end. e mention¾ above, pr�sÇ a)s data from a pipe in 
FIFO manner, meaning that the order that data is written into a pipe is the order 
that it is read from the pipe. The numXr of próesses reading from a pi� ͤ not 
necessarily Âual the numYr of proc�s� writing the pi�; if the number of readers 
or writers is greater than I, they must cúrdinate use of the pi� with other 
m½hanisms. The kexel acc�s� the data for a pi� exactly as it acc�s� data for 
a regular ile: It stor5 data on the pi� device and assigns blocks to the pi� as 
needed during write caæs. The difference Xtween storage allõtion for a pi+ and 
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Read Pointer Writer Pointer 

0 2 3 4 6 7 8 9 

o In�e 

Figure 5.17. Logi1l View of Reading and Writing a Pi� 

a regular Tle is that a pi� uses only the dir@t bl�ks of the inode for greater 
eRciency, although this placF a limit on how much data a pipe can hold at a time. 
The kernel manipulatD the direct bl�ks of the in�e as a circular queue, 
maintaining read and write �inters internally to preserve the FIFO order (Figure 
5.17). 

Consider four casF for reading and writing pi�: writing a pi� that has r�m 
for the data being written, reading ĭ a pipe that contains enough data to satisfy 
the read, reading from a pi� that d�s not contain enough data to satisfy the 
read, and Unally, writing a pipe that does not have r�m for the data being written. 

Consider Urst the case that a pr�ss is writing a pipe and assume that the pipe 
has r�m for the data +ing written: The sum of the number of bytE being wri³B 
and the number of bytes already in the pipe is lFs than or equal to the pipe's 
capacity. The kernel follows the algorithm for writing a regular Ule, except that it 
increments the pi� size automatically after every write, sin2 by deVnition the 
amount of data in the pi� grows with every wrÂe. This diffe¤ from the growth of 
a regular Ule where the pr�s increments the Wle size only when it wrÃes data 
,yond the current end of Ule. If the next byte oQset in the pi� were to rCuire 
$ of an indirect block, the kernel adjusts the Wle offset value in the u area to 
�int to the +ginning of the pi� (byte oSt O). The kernel never overwrites data 
in the pipe; it can rEet the byte offset to 0 because it has alr?dy determined that 
the data will not overXow the pipe's capacity. When the writer prĳs has written 
all its data into the pipe, the kernel updatG the pi�'s Goode) write pointer S[ that 
the next pr�ess to write the pi� will pr�eed from where the last write stop�d. 
The kernel then awakens all other pr�Fses that fell asleep waiting to read data 
from the pi�. 

When a prıs reads a pi�, it chAks if the pi� is empty or not. If the pi� 
c�tains data, the kernel reads the data from the pi� as if the pi� were a regular 
3# following the regular algorithm for read. However, its initial offset is the pi� 
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read pointer stored in the in)e, indicating the extent of the previous read. After 
reading each bl(k, the kernel d�rements the size of the pi� according to the 
num1r of bytes it read, and it adjusts the u area o3set value to wrap around to the 
�ginning of the pi�, if nec\sary. When the read system call Wmplet\, the 
kernel awakens l̀ sl ping writer pލތ and év+ the current rYd o3set in the 
inÕe (not in the ­le table entry). 

If a pr-s attempts to read more data than is in the pi�, the read will 
complete succ+sfully after returning all data currently in the pi�, even though it 

do' not satisfy the user count. If the pi� is empty, the pr(ess will typi�lly sl¡p 
until another prÓss writes data into the pipe, at which time all sl¢ping pr�s' 
that were waiting for data wake up and race to read the pi�. If, however, a 
pr(ess oÞns a named pipe with the � delay option, it will return immediately 
from a read if the pi� contains no data. The semanti� of r;ding and writing 
pia are similar to the semanti� of r;ding and writing terminal devic' (Chapter 
10), allowing programs to ignore the ty� of ,le they are dealing with. 

If a process writes a pipe and the pipe cannot hold all the data, the kernel 
marks the inode and gÖs to sleep waiting for data to drain from the pipe. When 
another pr(ess su�equently reads from t�e pi�, the kernel will notiV that 
pr˖s̠ are asleep waiting for data to drain from the pipe, and it will awaken 
them, as explained a]e. The exception to this statement is when a process writes 
an amount of data greater than the pi� capacity (that is, the amount of data that 
�n 1 storZ in the in)e direct blocks); here, the kernel writes as much data as 
bsible to the pi� and puts the prÔs to sleep until more rØm �om+ 
available. Thus, it is bsible that written data will not 1 contiguous in the pi� if 
other pr_ss' write their data to the pi� before this proVH resumes its write. 

Analyzing the implementation of piFs. the pr(ess inter©ce is consistent with 
that of regular ®les, but the implementation di3ers �aug the kernel stor+ the 
r;d and write oªsets in the in)e instead of in the ,le table. The kernel must 
store the o«sets in the in)e for nam[ pi�s � that pr_ss+ can share their 
valu': They cannot share values stÙed in ,le table entri' 1caug a proceH gets 
a new ¯le table entry for Ych oӨn call. How¦er, the sharing of read and write 
o¬sets in the in)e pr[at¤ the implementation of namZ pipes. Pr�� with 
acc's to unnamed pia share ac�s to the pi� through common ,le table entries, 
I they could Wnceivably store the read and write o3sets in the ,le table entry, as 
is done for regular °l+. This was not done, because the low-level routines in the 
kernel no longer have a�ess to the ±le table entry: The c)e is simpler because the 
pr�ses share o3sets stored in the inode. 

5.11.4 Oos- Pi3 

When clÚing a piF, a pr(ess follows the same prÒedure it would follow for 
clÛing a regular ,le, except that the kernel d× sFcial p"sing before rel;sing 
the pi�'s in)e. The kernel d�rements the number of pi� readers or writers, 
according to the ty� of the ²le descriptor. If the count of writer pr(eHes droß to 



116 SYS`M C�67 ê ¬ FILE SYSTEM 

0 and there are pÔňsD asleep waiting to read data from the pipe, the ke�B 
awakens them, and they retu� from their read calls without reading any data If 
the count of reader prŉŊs drops to 0 and there are prfessD asl?p waiting ˁ 
write data to the pipe, the ke�el awakens them and sends them a signal (Chapter 
7) to indicate an error condition. In +th �, it makes no ;č to allow ̈ 
prhses to continue sleeping when there � no hot that the state of the pit wiD 
ever change. For example, if a prfEs is waiting to r>d an unnamed pit and 
there are ć more writer pro0ssE, there will never , a writer pr�s. Although 
it is ssible to get new r>der or writer pr�sE for named piw, the kCel 
treats them consistently with unnamed pix. If no reader or writer prŗŘ 
access the pit, the kernel frA all its data blocks and adjusts the inje to indi/te 
that the pit is empty. When it releases the inke of an ordinary pit, it fr@s the 
disk coy for reassignment. 

5.11.5 E«m� 

char strinÇ] - "hello"; 
mainO 
{ 

char bufll024]; 
char •cpl, •cp2; 
int fµ£2); 

œl - string; 
°2 - buf; 
while (*cpl) 

•cp2++ - •cpl w; 
ií(fds); 
for (;;) 
{ 

} 

write(fds[ 11. buf, 6); 
read(fds£0), «f, 6); 

Figure 5.18. Reading and Writing a Pit 

The program in Figure 5.18 illustratF an artiJcial use of pix. The pris 
creates a pipe and gls into an inKnite lnp, writing the string "hello" to the piu 
and reading it frm the pipe. The ke�el does not know nor does it care that the 
pƁs that writD the piv is the same procGs that reads the pipe. 

A prg� executing the program in Figure 5.19 creatD a named pit node 
called "Jfo". If invoked with a second (dummy) argument, it continually writes 



5.12 

#include <fattl.h > 
char string() - "heĈo"; 
main(argc. argv) 

int argä 
char •argv(); 

int fd; 
char Oi256); 

PIP  ̂

1• create namd pi� with read/write �rmiĮion for l« cW •1 
mkn�("Tfo", 010777, 0); 
if (argc -- 2) 

fd - oġn("Tfo", O_WRONLY); 
else 

fd - open("÷fo", O_RDONLY); 
for (;;) 

if (argc -- 2) 
write(fd, string, 6); 

else 
read (fd, buf, 6); 

Fig$e 5.19. Reading and Writing a Named Pi� 
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the string "hello" into the pipe; if  invoked without a sKond argument, it  reads the 
named pipe. The two pr˦  ˧ are invocations of the identical program and have 
secretly agrM to communi@te through the named pi� � Xfo''. but they neL not 
" related. Other users could execute the program and participate in (or interfere 
with) the conversation. 

5.13 DUP 

The dup system call copies a Yle dNcriptor into the Zrst free slot of the user [le 
dRcriptor table, returning the new Zle dRcriptor to the user. It works for all \le 
types. The syntax of the system Õl is 

newfd - dup(fd); 

where fd is the ]le descriptor :ing duped and ŕwfd is the new ^le descriptor that 
references the Zle. Because dup duplicates the Zle descriptor, it increments the 
c�nt of the corrO�nding Zle table entry, which now has one more ]le dOcriptor 
entry that �ints to it. For example, examination of the data structurP depicted in 
Figure 5.20 indicates that the procOs did the following sequence of system calls: It 
o�ned the Zle "/etc/passwd" (Zle dRcriptor 3), then o�ned the Zle "local" (_le 
dPcriptor 4), opened the `le "/etc/passwd" again (`le dQcriptor 5), and Znally, 
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user 9le 
de�riptor table >le table inae table 
0 FGHI 
1 
2 GHIJKLMNOP 
3 4 ������� 
5 
6 t==��--�� count 

count 2 (/etc/hsswd 

7 �-2---4 

count 
1 

count 
1 

count 
1 

Fȸó 5.�. Data Structur2 aft0 Dup 

(l`al) 

duped :le descriptor 3, retuving ;le d3criptor 6. 
Dup M perhaps an inelegant system %ll, be%use it assumes that the user knows 

that the system will retuv the low1t-numbered free entry in the user ?e 
descriptor table. However, it serves an imirtant purpose in building sophisti%ted 
programs from simpler, building-bl_k programs, as exempli=ed in the &nstruction 
of shell pipelines (Chapter 7). 

ConsLer the program in Figure 5.21. The variable i contains the =le de�riptor 
that the system returns as a result of opening the <le "etc/passwd," aY the 
variable j contains the :le descriptor that the system returns as a result of duping 
the =le d1criptor i. In the u area of the process, the two user =le d1criptor 
entries represented by the user variables i aZ j point to one :le table entry and 
therefore use the ~me =le o8set. The ;rst two reads in the pr�s thus read the 
data in �quence, and the two bu7ers, buā and buü, do not contain the same data. 
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#include <fcntl.h> ѶinO 
( int i, j; 

char 4fl[512), buf2[512); 

i - oӪn("/etc/Ӧӧd", O_RÖNLY); j - dup(i); 
r@(i, bufl. sizBf(bufl)); 
r@ G. buf2, sizDf(buf2)); 
clüe(i); 
r@G, buf2, sizCf(buf2)); 

̢ure 5.21. C Program Illustrating Dup 
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This differs from the (se where a ws opens the same �le twice and reads lhe 
same data twice (Section 5.2). A Ūߚؽ (n close eitÚr �le dOcriptor if it wants, 
but 1/0 continue£ noԶally on the other ke dΗcriԆor, в illu£t̠tҢ in the 
example. In particular, a Ӽs �n close its standard output )le dÏcriptor (Õle 
dOcriptor I) ,  dup another �le descriptor � that it hcomes )le descriptor 1 ,  then 
trÇt the Öle as its standard output. Chapter 7 presents a more rolistic example of 
the use of pipe and dup when it dOcri¹ the implementation of the shell. 

5.14 MOUNTING AND UNMOUNTING ̟ SYSTEMS 

A physical disk unit Ànsists of several logical sections, rnitioned by the disk 
driver, and Èch s�tion has a devi½ )le name. Prٶٵ »n ac¿s data in a 
sËtion by opening the appropriate devik )le name and then reading and writing 
the .. �le," troting it as a sequenk of disk blocks. Chapter 10 gives details on this 
interfa¾. A section of a disk may contain a logical �le system, consisting of a bût 
blBk, sutr blBk, inode list, and data blocks, " descri·d in Chapter 2. The 
mount system (ll connects the �le system in a speci)ed section of a disk to the 
existing �le system hierarchy, and the umount system (ll disconnÊts a rle system 
from the hierarchy. The mount system call thus allows users to ass data in a 
disk section as a rle system instead of a sequence of disk blocks. 

The syntax for the mount system (ll is 

mount(svial pathname, directory sthname, options); 

where special pathname is the name of the device sucial ×le of the disk section 
Ántaining the �le system to be mounted, dir³toñ pathname is the dirÌory in the 
existing hierarchy where the )le system will ¸ mountp ((lled the mount àint), 
and options indi¼te whether the �le system should h mountp "read-only" 
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r - - - - - - - - - - - - - - - - - - - - - - - - - - ,  
I I 

bin etc usr 1 Rot File System 

" A : cc date sh getty tsswd 1 
L - - - - - - - - - - - - - - - - - - - - - - - � - - �  

r - - - - - - - - - - - - - - - � - - - - - - - ,  
I 

� 
bin include src 

� I I  
1 awk banner yacc stdio.h uts 1 
L - - - - - - - - - - - - - - - - - - - - - - - �  

/dev/dskl 
File System 

Figure S.�. File System Tree Before and After Mount 

(system calls such as write and creal that write the Fle system will fail). For 
example, if a ês issuA the system 0ll 

mount("/dev/dskl", "/usr", 0); 

the kernel attach@ the Fle system 5ntain> in the wrtion of the disk called 
"/dev/dsk1 " to dir<tory "/usr" in the existing Gle system tree Ŀe Figure 5.22). 
The Hle "/dev/dskl "  is a blhk svcial Gle, meaning that it is the name of a blik 
device, typi1lly a wrtion of a disk. (e ke}el assumes that the indicat? Ŏn 
of the disk contains a Fle system with a suur block, inme list, and rpt inke. 
After completion of the mount system call, the rpt of the mounted Fle system is 
ac4ssed by the name ••tusr". Pr] ̂0n ac3ss Iles on the mounted Ile system 
and ignore the fact that it is detachable. Only the link system 2ll checks the Gle 
system of a Fle, b=use System V dn dt allow Gle links to stn multiple Gle 
systems (see Section 5.15). 

The kernel has a mount table with entries for every mount> Hle system. Each 
mount table entry contains 

• a devi3 number that identiFA the mounted Jle system (this is the logical Jle 
system number mention> previously); 

• a pointer to a buEer containing the Fle system suvr bljk; 
• a pointer to the root inle of tO mount? Gle system ("/" of the "/dev/dskl" 

Gle system in Figure 5.22); 
• a winter to the inme of the directory that is the mount wint ("usr" of the rqt 

Fle system in Figure 5.22). 
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Ass{iation of the mount point inode and the �ot in~e of the mounted Lle system, 
set up during the mount system call, allows the kDel to traverse the Mle system 
hierarchy gracefully, without s�ial user knowledge. 

algorithm mĜnt 
inputs: �le name of bl|k s¶< �le 

directory name of mount ģint 
options (read only) 

output: none ( 

} 

if (not suWr user) 
return (error); 

get inęe fě blĖk spíial øle (algorithm namei); 
make legality checks; 
get inode for "mountï on" dirî name (algorithm namei); 
if (not directory, or referenå count > 1) 
( 

release inodes (algorithm iput); 
return (error); 

Tnd empty slot in mount table; 
invoke bl�k device driver oWn routine; 
get f~e buõer from buöer cache; 
read suir block into frð 4Q; 
initialize suWr bl�k Telds; 
get `ot in�e of mountd device (algorithm iget), ĭve in mount table; 
mark iĒe of .. mountd ¤" dirìtory i ďunt Ĥint; 
releCe sĢial ùle iēe (algorithm iput); 
unlėk i�de of Đunt ӯnt ѡƁ; 

Figure 5.23. Algorithm for Mounting a File System 

Figure 5.23 depicts the algorithm ό mounting a Nle system. The kernel only 
allows pމވs owned by a superuser � mount or umount Ole systems. Yielding 
permi�ion for mount and umount to the entire user community would allow 
malicious (or not � malicious) users to wreak havoc on the Mle system. Su�r­
useÅ should wreak hav} only by accident. 

The kernel Pnds the inode of the special Qle that reprEents the Mle system to / 
mountB, extracts the major and minor num/rs that identify the appropriate disk 
section, and Nnds the in�e of the directory ¦ which the nle system will be 
mountC. The referen5 Ěunt of the dirAtory in�e must not / greater than I Gt 
must be at l@st l - why?), because of �tentially dangerous side effects (.e 
exercise 5.27). The kemei then allo4tE a frñ slot in the mount table, marks the 
slot in sÚ, and assigns the device num0r Neld in the mount table. The above 
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assignments are done immAiately i%use the %lling proc's could go to slnp in 
the ensuing devi? open pr"edure or in reading the ,le system su/r bl"k, and 
another pr�s @uld attempt � mount a -le system. By having marked the 
mount table entry in use, the kernel prevents two mounts from using the same 
entry. By noting the dÈi¶ number of the attemptS mount, the ke]el °n 
prevent other prǂǃ from mounting the same ,le system aÚin, ɒѮ stranÛ 
thinÜ ¹uld hap/n if a double mount were allowed (Нe exercise 5.26). 

The ke]el %lls the o¡n Ďure for the bl"k device containing the Île 
system in the same way it invokes the pro?dure when o/ning the bl"k devik 
dirRtly (Chapter 10). The devi? open pro?dure typi%lly checks that the devik 
is legal, sometimes initializing driver data structuro and sending initializatioo 
@mmands to the hardware. The kernel then allocates a free buffer from the buffer 
Čol (a variation of algorithm getblk) to hold the su/r bl"k of the mountA .le 
system and rÀds the super block using a variation of algorithm read. The kernel 
stores a pointer to the in7e of the mountA-on directory of the original ,le trn to 
allow -le path names @ntaining " •. " to traverse the mount point, as will be seen. 
It .nds the root inode of the mounted .le system and stor' a pointer to the inþe 
in the mount table. To the user, the mountS-on directory and the ՄՅ of the 
mounted .le system are logi%lly equivalent, and the kernel 'tablish' their 
equivalence by their i˨stence in the mount table entry. Proc͈ ͉ can no longer 
access the inode of the mounted-on dirRtory. 

The ke]el initializ' Ïelds in the ,le system su/r bl"k, clearing the l"k -elds 
for the free bl"k list and free inÿ list and setting the number of free inĀ in 
the su/r block to 0. The purpose of the initialization& is � minimize the danger κ 
.le system ºrruption when mounting the Ðle system after a system crash: Maîg 
the kernel think that there are no free in7' in the super bl"k fĄ  ̧ algorithm 
ialloc to search the disk for free inā. Unfortunately, if the linkS list of ˞e 
disk bl"ks is Ććpt, the kÆel dĂs not .x the list inteėally (see Section 5.17 fą 
-le system maintenan·). If the ؄ mounts the ,le system read-only to disallow 
all write o/rations to the -le system, the kernel sets a Öag in the super bl"k. 
Finally, the keĘel marks the mountÂ-on in7e as a mount point, so other 
prüsses %n later identify it. Figure 5.24 depicts the various data structurÇ at 
the conclusion of the ĥuį %ll. 

5.14.1 Crossing Mount ɒ ϊ Ȥ Eth NaS 

Let us re@nsidÅ algorithms namei and iget for the cases where a Ċth name 
crćses a mount point. The two %ses for cr}sing a mount ċint are: crĆsing 
from the mounted-on .le system to the mounted Ñle system (in the dirRtion from 
the glo¯l system ęot towards a lÁf nýe) and cr}sing from the mountÃ lːe 
system to the mountÄ-on Õe system. The following sequence of shell commands 
illustrat' the two %so. 
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lnŚe Table Mount Table 

Mounted on inIe · .  
Marked as mount ũint 

� / Referenæ cnt 1 

SuÄr blŕk / 
Mount� on inIe 

/ Root inode 
ºvtç mśe v 

Not in use 
Referen¶ cnt 0 

Rşt inÃe of 
mounted êle system 

Reference cnt 1 

ʓë 5.�. Data StȌctur= aĔer Mount 

mount /dev/dskl /usr 
cd /usr/src/uts 
cd . ./ . ./ .. 

1] 

Buċr I 

The mount ëmmand invokes the mount system åll after doing some consistency 
checks and mounts the »le system in the disk section identičed by "/dev/dskl" onto 
the directory "/usr". The Grst cd (change direìory) command causes the shell � 
exxute the chdir system �ll, and the kernel parses the path name, crŠsing the 
mount tint at "/usr". The sxond cd command rýults in the kernel ~rsing the 
path name and crozing the mount tint at the third .... " in the path name. 

For the case of crossing the mount point from the mounted-on »le system to the 
mounted Gle system, consider the revis� algorithm ϋ iget in Figure 5.25, which is 
identi�l to that of Figure 4.3, ex¶pt that it chxks if the inode is a mount Ūint: 
If the inÃe is mark� •·mount�-on," the keȉel knows that it is a mount ūint. It 
Gnds the mount table entry whose mounted�n inIe is the one just acèssed and 
not= the devi¶ number of the mounted Gle system. Using the device number and 
the inÃe numÞr for rŞt, which is ·mmon � all »le systems, it then aǁǂ the 
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algorithm iget 
input: ?le system inqe num)r 
output: ljk8 inode 
( 

} 

while (not done) 
( 

if (inode in inpe cache) I 

} 

if (inode lkked) 
( 

sl9p (event ice ɓŒ unlocked): 
continue; 1• lsp •1 } 1• special prƲsing for Yunt points---•/ 

if (inode a ]unt point) 
( 

} 

@nd mount table entry for mount point; 
Gt new Ale system number from ]unt table: 
1 root inode number in search; 
;ntinue; 1• lrp again •1 

if (inpe on inqe f½e list) 
remove from fr9 list; 

increment inqe referen. count; 
ret� (in qe): 

1• inode not in inode cache •1 
reD new inode from free list; 
reset inode number and Ble system; 
remove inpe from old hash qu:e, place on new one; 
read inpe from disk (algorithm bread); 
initialize inqe (e.g. reference count é 1); 
retu~ inqe; 

Figure 5.25. RevisT Algorithm for A´µng an Inode 

ІЇ inode of the mounted dÉice and returns that in7e. In the ,rst change 
directory example above. the kernel Òrst a±'s' the inode for "/usr" in the 
mounted-on ,le system, -nds that the in|e is markT "mounted-on." Ónds the rrt 
in|e of the mountA Ôle system in the mount table, and a²³ the răt in7e of 
the mountT -le system. 
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algorithm namei 
input: �th nax 
output: locked in�e 

1• convert path name to in�e •1 

( 
if (�th name starts from ՎՏ 

working inode - root inode (algorithm iget); 
else 

working inode - current directory inode (algorithm iget); 
while (there is more path name) 
( 

read next path name com�nent from input; 
verify that inOe is of dir@, �rmiªions; 
if (in�e r of changA ޗޖ and 4m�nent is • .. ") 

continue; 1• loop •1 
component search: 

} 

read in�e (directory) (algorithms bmap, bread, brelse) ; 
if (component matchò a directory entry) 
{ 

} 

get inode number for matchB component: 
if (found in�e of r�t a� working in�e is r�t and 

and 5m�nent name is • .. •) 

} 

1• ãäg ěunt ĳint •1 
get mount table entry for working in�e; 
release working in�e (algorithm iput); 
working inode - mountB on i�de; 
lock mounted on inode; 
increment reference count of working inode; 
go to comp�ent s?rch (for " .. "); 

release working in�e (algorithm iput); 
working inode - iíe for new in�e n\lm.r (algorithm iget); 

else 1• com�nent not ի ѠݒƁ •1 
return (no in�e); 

return (working inode); 

FtgUre 5.�. RevisC Algorithm for Parsing a File Name 
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For the sêond F of Ksing the mount point from the mount< úle system to 
the mĩnt<-on �le system, consider the rôised algorithm for namei in Figure 5.26. 
It is similar to that of Figure 4.11. However, after ûnding tć inMe numÙr for a 
Įth name vm�nent in a diÆctory, the kñel checks if the inode num:r is the 
r° inode of a üle system. If it is, and i f  the inMe of the current working inode is 
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also root, and the path name component is dot-dot ( .... "), the keHel identiÒq the 
inode w a mount point. It �nds the mount table entry wh|e devin number equals 
the devi· num°r of the last found in)e, gets the inode of the mounted-on 
directory, and continuÇ its search ĥ dot-dot (" .. ") using the mounted-on inðe v 
the working in)e. At the r{t of the �le system, however, " .. " is the rXt. 

In the example above (H ... ./ . ./ .. "), assume the starting current directory of the 
p3s is "/usr/src/uts". When ôrsing the Fth name in �mei, the starting 
working in)e is the current directory. The kewel chang� the workié inje � 
that of .. /usr/src" � a rÈult of parsing the �rst ...... in the path name. Then, it 
parsq the second ...... in the Fth name, �nds the root inode of the (previously) 
mounted �le system, "usr", and makes it the working in)e in namei. Finally, it 
parses the third •• .. " in the Fth name: It snds that the inñe numlr for " .. " is 
the rXt in)e nummr, its working in)e is the ʀʁ inòe, and " .. " is the current 
Fth name ¹m}nent. The keHel �nds the mount table entry for the "usr" mount 
point, releases the current working inode (the r{t of the "usr" �le system) , and 
allocates the mounted-on inode (the inode for directory "usr" in the root ġe 
system) � the new working inode. It then sprch� the directory structures in the 
mounted-on "/usr" for 	 .. " and �nds the inʖe num× for the rXt of the Ale 
system ("/"). Če �hdir system call then completÉ as usual; the ³lling prîÍs ts 
oblivious j the fact that it cyz a mount }int. 

5.14.2 Unmʛɽing a 9le System 

The syntax � the umount system ´ll is 

umount(sYcial slename); 

where sâcial glename indiµt� the �le system to ± unmounted. When 
unmounting a �le system (Figure 5.27), the kernel acnss� the in ode of the devi̧  
to be unmounted, retriev� the deviN number for the special Ble, relpsÊ the inode 
(algorithm iput), and Bnds the mount table entry wh|e deviN numlr Æuals that 
of the s÷ial Ale. Before the keHel actually unmounts a �le system, it makes sure 
that no Al� on that �le system are still in use by searching the in)e table for all 
Bl� whose device nummr equals that of the �le system being unmounted. Active 
Óles have a üitive referenN count and include �l� that are the current dirÀtory 
of �me pr�s, �les with shared text that are currently being executed (Chapter 
7), and open �les that have êt been closed. If any Al� from the �le system are 
active, the umount call fails: if it were to succeed, the active �les would 4 
ina¶essible. 

The buÐer øol may still ºntain .. delayÃ write" blocks that were not writtÅ 
to disk, Z the keHel Ôush� them from the b�� úol. The kexel removË shared 
text entries tÙt are in the region table but not oYrational (sg Chapter 7 for 
detail) ,  writ� out all rÁntly modi�Ä suör blocks to disk, and updates the disk 
copy of all inodÌ that neÂ uõating. It would suÑce for the äel to update the 
disk lʔ, suYr blïk, and inodes for the unmounting Ble system only, but for 
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algorithm umount 
input: s�cial Ele 0 ג׺ jle system W ' unmount: 
output: nne 

( 
if (not su�r u�r) 

return(error); 
get ipe of s�ial Ele (alÉrithm naei); 
extract major, mior num'r of ўࡹ (ing unmynt:; 
get funt table entry, bas: on major, minor num*. 

for unmounting Gle system; 
release inode of special Ele (algorithm iput); 
remze shar; text entries from region table 7 jlg 

)longing W Ele system; t• chap 7xxx •t 
uçate su�r ̘ф inues, Hush +Cers; 
if (Gles from Ele system still in use) 

retu� (error); 
get root iZ of mounted Fle system from mount table; 
lock inode; 
release inode (algorithm iput); t• iget was in m̙nt •t 
invoke clxe routine B special devi/; 
invalidate buffers in èol from unmounted Ele system; 
get in e of mount pvnt ӿ mount table; 

lock inte: 
clear Hag marking it as mount �int; 
rel9se inse (algorithm iput); t• iget in mount •t 

free buDer us< for super block; 
fr= mount table slot; 

Figure 5.17. Algorithm for Unmounting a File System 

1� 

historical reasons it do· so for all kle systems. The kernel then rel²ses the rât 

inode of the mounted kle system, held since its ãiginal a¬ss during the זu  ؒ
system `ll, and invokA the driver of the devia that contains the Âle system to 

clåe the device. Afterwards, it gog through the bu¿s in the buffer cache and 

invalidates buffers for bl"ks on the now unmounted Ãle system; there is no ne  ́ to 

`che data in those blocks any longer. When invalidating the buηeՒ, it moves the 
bu½ers to the ©ginning of the bu¾er frf list, so that valid bl"ks remain in the 

buffer cache longer. It clears the .. mounted�n" Æag in the mounte·on inode set 
during the mount 5ll and releases the inße. After marking the mount table entry 

free for general use, the umount 5ll completg. 
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Figure 5.*. LinkW FilY in File System Tree 

5.15 LINK 

The link system call links a l̀e to a new name in the ale system directory 
structure, creating a new directory entry for an existing in�e. The syntax for the 
link system call is 

link(source l̀e name, target l̀e name); 

where source Ęle ĸme is the name of an existing ale and tåt .ėle Ĺme is the 
new (additional) name the l̀e will have after completion of the link Nll. The ale 
system contains a path name for each link the l̀e has, and pr�� can ą s the 
ble by any of the �th namZ. The ke�el d� not know which name was the 
original `le name, so no `le name is treated spVially. For example, after exVuting 
the system calls 

Iink( .. /usr/src/uts/sys", .. /usr/include/sys"); 
link(" /usr/include/real`le.h", .. /usr/src/uts/sys/test`le.b"); 

the following three path names refer to the same ble: "/usr/src/uts/sys/testble.h". 
"/usr/include/sys/t[t`le.h", and "/usr/include/real`le" (see Figure 5.28). 

The ke�el allows only a su�ru£r to liĭ directori\, simplifying the Ping ɵ 
programs that traverse the l̀e system tree. If arbitrary users Ould link directori]. 
programs designX to traverse the cle hierarchy would have to worry aIut getting 
into an in`nite l�p if a user were to link a directory to a n�e name Hlow it in 
the hierarchy. Su�rusers are presumably more Nreful aJut making such links. 
The Npability to link directories had to H sup�rtX on early versions of the 
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system, Y' the implementation of the mkdir command, which cr5t; a new 
directory, relies on the (xbility to link directori;. lnclusion of the mkdlr system 
call eliminat; the need to link directories. 

algorithm link 
input: existing qle name 

nh ve name 
output: �� 

{ 
get in£e for existing rle name (algorithm namei); 
if (t� many links on dle ŋ linking di¹y without su§r Г §r�ssion) 
{ 

} 

relese i�e (algorithm iput); 
rePrn (err;; 

inc n̮t link count on inode: 
update disk c¥y ڐ in¤e; 
unlock inode; 
get par:t inode for directsy ࠬ önࠎin new \e name (algorithm Ґѹ; 
if (new dle name already exists or existing cle, new sle on 

( different sle systems) 

un- uyate doh a# 
retu»(error); 

crDte new directory gtry in parJt dirFtory ڏ new sle name: 
include new sle �me, inode number of existing sle �me; 

reldse parent directory inode (algorithm iput); 
release inode of existing sle (algorithm iput); 

Figuԧ 5.29. Algorithm for Linking Files 

Figure 5.29 shows the algorithm for link. The kernel Crst locat; the inpe a 
the source Cle using algorithm namei, increments its link *unt. uzat< the disk 
*py of the inode (for consistency, as will 1 s8n), and unloT the inode. It then 
s4rches for the target Cle; if the Cle is {esent, the link call fails, and the kernel 
decrements the link count increment7 earlier. Otherwise, it notes the lo)tion of 
an empty slot in the parent directory of the target Dle, writ; the target Ele name 
and the source Cle inpe num"r into that slot, and relҘ the inpe of the target 
Fle parent diݑry via algorithm iput. Since the target Ele did not originally 
exist, there is no other inqe to rel6se. The ke�el conclud= by r96sing the 
�urce Cle inpe: Its link count � 1 greater than it was at the beginning of the ca�l, 
and another name in the Gle system allows access � it. The link *unt kee| count 
of the directory entries that refer to the Cle and is thus distinct from the inre 
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reference count. If no other proOssi aNs the xle at the conclusion of the ɚnk 
Lll, the in°e reference count of the vle is 0, and the link Qunt of the vle ǅ at 
least 2. 

For example, when exbuting 

link ("source'\ "dir/target "); 

the kernel l¨ath the in°e Ĥ vle "sourO", increments its link Runt, rememFs 
its in°e number, say 74, and unlocks the in°e. It locati the in°e of "dir", the 
parent directory of "target", vnds an empty dirbtory slot in "dir", and writj the 
vle name "target" and the in°e numDr 74 into the empty directory slot. Finally, 
it releask the in°e for "source" via algorithm iput. If the link Sunt of .. sourP" 
had bgn 1, it is now 2. 

Two deadlock p³sibilities are worthy of note, both conceÂing the reason the 
prjs unl¨ks the source xle in°e after incrementing its link count. If the kernel 
did not unl̈ k the in°e, two p�� Tuld deadl̈ k by exeUting the following 
system calls simultaneously. 

procis A: link("a/b/c/d", "e/f/g"); 
pr¬ss B: link("e/f', "a/b/c/d/ee"); 

Sup·e pr­ss A vnds the inode ģ ule "a/b/cld'' at the Ʊõ time that ɐžs 
B vnds the inode for "e/f'. The phrase at the same time means that the system 
arrives at a state where each proOss has all̈ ated its in°e. Figure 5.30 illustratl 
an e�tion sOnario. When p�s A now attempts to vnd the in°e f² 
directory "e/f', it would slfp awaiting the event that the in°e for "f' Ñomes 
Ae. But when prochs B attempts to wnd the inode for dirdtory "a/b/c/d", it 
would slgp awaiting the event that the inode for "d" Dcomes free. Pr®s A 

would , �lding a l̈ ked in°e that ¸s B wants, and pÄs B would Ï 
holding a l̈ ked in°e that pr¬Ð A wants. The keÃel avoids this classic 
example of deadlock by releasing the source vle's inode after incrementing its link 
count. SinO the xrst resourO (in°e) is Ae when aMessing the next resourO, no 
deadl̈ k can occur. 

The last example showe how two prlses Quld deadl̈ k each other if the 
inode lock were not released. A single pr¨hs Quld also deadlock itself. lf it 
execute 

link("alb/ c", "alb/ c/ d"); 

it would alloLte the inode for vle "c" in the vrst ¶rt of the algorithm; if the 
kernel did not release the in°e lock, it would deadlock when enQuntering the 
in°e "c" in searching for the vle "d". If two pÆÇ, or even one prjs, ć ld 
not continue executing Eause of dadlªk, what would D the effct on the 
system? Since inodes are ynitely all«table re\ur�, receipt of a signal cannot 
awaken the pr©js from its sleep (Chapter 7). HenO, the system could not break 
the deadl̈ k wit�ut reb±ting. If no other p�ses accksed the vlm over which 
the pr¬sses dadl¨k, no other pr­sses in the system would , atted. 
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However, any processes that aÄÅ th�e Bles (or attempted to aÏss other 3les 
ĝ the l}ked directory) would deadlVk. Thus, if the Ble were "/bin" or 
"/usr/bin" (typical de�itori2 for Rmmands) or "/bin/sh" (the shell) the ̰ ̱
on the system would Q disastrous. 

S.l6 UNUNK 

The unlink system call remov2 a directory entry for a 3le. The syntax for the 
unlink call is 

unlink (pathname); 

where pathname identi.2 the name of the 3le to be unlinked from the dir�tory 
hierarchy. If a pr0s unlinks a given .le, no Ble is a�sible by that name until 
another directory entry with that name is cr�tÑ. In the following c/e fragment, 
for example, 

unlink("my3le"); 
fd - o�n("myßle", O_RDONL Y); 

the open call should fail, }cause the current dir�tory no longer contains a iÒe 
Ãlled myþle. If the .le Qing unlinked is the last link of the 3le, the kernel 
eventually frÔs its data blocks. However, if the àle had several links, it is still 
accessible by its other nam×. 

Figure 5.31 gives the algorithm 
 unlinking a 3le. The ke�el ãt l a 
variation of algorithm namei to 7nd the 7le that it must unlink, but inst�d of 
returning its inode, it returns the inode of the parent directory. It accesses the in· 
core in/e of the ále to } unlinked, using algorithm iget. (The s�cial case for 
unlinking the 7le "." is covered in an exercise.) After checking error Rnditions 
and, for executable .les, removing inactive shared text entriØ from the region table 
(Chapter 7), the ke�el clears the âle name from the �rent direÉory: Writing a 0 
for the value of the in�e number suÞcÙ Ė clear the slot in the directory. The 
kernel then d� a synchronous write of the directory to disk to ensure that the .le 
is inaccessible by its old name, decrements the link count, and releases the in�ore 
in/es of the parent directory and the unlinkÐ 7le via algorithm iput. 

When releasing the in-core in/e of the unlinkc 3le in Ęut, if the reference 
Runt dro� to 0, and if the lnÔ count [ 0, the kernel reclaims the disk blVks 
Vcupied by the .le. No Ble nam2 refer to the inode any longer and the in/e is 
not active. To reclaim the disk blocks, the kernel loo� through the inode table of 
Çntents, freeing all direct blVks immediately (according to algorithm free). For 
the indirect bl�ks, it recursively freÚ all bl~ks that ap�ar in the various levels ι 
indirection, freeing the more direct blocks .rst. It zeroes out the block numQrs in 
the inode table of contenl� and sets the 7le size in the inode to 0. It then cl�rs the 
inode .le type 7eld to indicate that the in/e is frÕ and freA the in/e with 
algorithm ħee. It u�ates the disk since the disk Rpy of the in/e still indicatÒ 
that the in/e was in use; the iyde is now free for assignment to other .les. 
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algorithm unlink 
input: 9le name 
output: de 
( 

get pa̧nt in�e of 9le to R unlinkf (algorithm namei); t• if unlinking the current directory ... •t 

if Oast component of <e name is ".") 
increment inode reference count; 

else 
get inode of =e to be unlinked (algpithm iget): 

if (:le is di| but user is not sutr user) ( 

} 

release inm (ÍϮ  ֱ iput); 
return (error) ; 

if (shared text >e and link count currently I) 
remove from r4ion table; 

write srent directory: zero ibe number of unlinked :le; 
release in ڄ parent directory (algorithm i put); 
d3rement 9le link count; 
rel1se ;le ice (algorithm iput) ; 

I• iput checks if link кunt is 0: if ϝ, 
• ԱΆ ]e blkks (aџitЍ free) Î • frees inle (a)gorithm аe); ., 

Fi;Ȣ 5.31. Algorithm for Unlinking a File 

5.16.1 �) Sy/ �$y 
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The ke�el orders its writ> ࠫ disk to minimize Fle system corruption in event of 
system failure. For instance, when it remov? a Gle name from its parent dirΈtory, 
it writes the directory synchronously to the disk - before it d?troys the /ntents of 
the Gle and frees the inode. If the system were to crash $fore the Hle �ntents 
were removed, damage to the Hle system would $ minimal: There would be an 
in�e that would have a link count I greater than the num%r of directory entri? 
that access it, but all other paths to the Gle would still be legal. If the directory 
write were not synchronous, it would be �sible for the dir<tory entry ; disk to 
!int to a free (or reallo-ted!) inode after a system crash. Thus there would $ 
more directory entries in the Gle system that refer to the in~e than the in~e 
wo+d have link /unts. In partic+ar, if the Ile name was that of the last link to 
the Gle, it would refer to an unalJ{ted in~e. System damage is cl2rly l5s 
severe and easier to correct in the Jrst case (s= Section 5.18). 
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For example, supúse a �le has two links with Ith names "a" and "b'\ and 
sup:e a pr�s unlinks "a". If the kesel orders the disk write oùrations, th¾ 
it zeros the directory entry for ''a" and writes it to disk. If the system �s,s af  h

the write to disk 4mplet�, �le "b" has link count of 2, but �le ''a" dí not exÜ 
b¶ause its old entry had been zerìd before the system ­ash. File "b" has an 
extra link count, but the system functions properly when re¡oted. 

Now sup:e the kernel order» the disk write operations in the reverse ord¿ 
and the system crashes: That is, it decrements the link count for the &le "b" to I, 
writes the inëe to disk, and crash� �fore it could zero the directory entry for Ġe 
"an. When the system is re¢oted, entri� for Ìl� "a" and "b" exist in their 
resoctive directories, but the link 4unt for the 'le they reference is 1 .  If a pƏs 
then unlinks Ñe "a", the &le link 4unt drops to 0 even though �le "b

,
. still 

referencd the inode. If the keþel were later to reassign the inêe as the r�ult of 
a creal system 3ll, the new Ðe would have link count 1 but two øth namd that 
reference it. The system 3nnot rectify the situation except via maintenance 
programs �sck, described in Section 5.18) that a�s the �le system through ̄e 
blHk or raw interface. 

The kernel also fre� in9es and disk blnks in a soci'c order to minimize 
corruption in ev�t of system failure. When removing the contents of a �le and 

clearing its in9e, it is pósible to free the blnks containing the 'le data �rst, or it 
is :sible to fr½ and write out the inode 'rst. The r�ult is usually identi3l for 
both cas�, but it differs if the system crash� in the middle. Sup:e the kesel 
'rst frees the disk bléks of a &le and crash�. When the system is re¤oted, the 
in9e still contains referen¬ to the old disk blHks, which Ǥy no longer contain 
data relÄant to the 'le. The kernel would see an apIrently gð Ïle, but a ǚ 
a©essing the &le would notib corruption. It is also pòsible that other &les wÀe 
assigned thñe disk blocks. The eËort to clean the &le system with the fsck 
prîram would be great. However, if the system Írst writÁ the inode to disk and 
the system crash�, a user would not notice anything wrong with the �le system 
when the system is rebïted. The data blHks that previously belonged to the �le 
would be inaªssible to the system, but users would notice no apparent corruption. 
The fsck program also &nds the task of reclaiming unlink¼ disk blocks easier than 
the clean-up it would have to do for the �rst sequence of events. 

5.16.2 RaŐ Cȭʺȫs 

Ra« conditions abound in the unlink system call, Irticularly when unlinking 
directoriÂ. The rmdir command remov� a dirºory after verifying that t  ̀
directory contains no Îles Gt reads the directory and ch·ks that all dir ţory 
entri� have in9e value 0). But since rmdir runs at user level, the actions of 
verifying that a directory is empty and removing the directory are not atomic; the 
system could do a 4ntext switch  tween execution of the read and unlink system 
3lls. Henb, another procÃs could creal a �le in the directory after rmdir 
determined that the dir¹tory was empty. Ux ¨n prevent this situation only by 
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use of 8le and r°rd lmking. Once a pOs Bgins execution of the unlink ¤ll, 
however, no other pos can ţŤs the �le being unlinked sin) the inÙes of the 
parent dirGtory and the �le are lKk1. 

Recall the algorithm for the link system call and ½w the keêel unl;ks the 
inode Cfore completion of the call. If another prmess should unlink the ¶le while 
the inode lock is free, it would only decrement the link count; sin) the link $unt 
had been in­emented before unlinking the inode, the $unt would still be greater 
than 0. Hen), the �le 7nnot C removed, and the system is safe. The $ndition is 
±uivalent to the case where the unlink hapMns immediately after the link call 
completc. 

Another ra) $ndition exists in the ó where one prZs is converting a ·le 
path name to an inLe using algorithm namei and another ńňs is removing a 
directory in that Þth. Supre pOs A is parsing the path name "a/b/c/d" and 
goes to slHp while all;ating the in-core inode for "c". It $uld go to slbp while 
trying to l;k the inode or while trying to a¥ess the disk block in which the inode 
resides (see algorithms igel and bread). If process B wants to unlink the directory 
"c", it may go to slbp, pÜsibly for the same reasons that proc²s A is slHping. 
Supre the kernel later schedules prKess B to run Bfore prns A. Proccs B 
would run to completion, unlinking directory "c" and removing it and its contents 
(for the last link) before pr$7 A runs again. ʭter. pr%s A would try to 
ac¬ss an illegal inǽre in)e that had ̖ ̗ remov
. Algorithm œmei tĩrefore 
chGks that the link count is not 0 before píîing, reàrting an error otherwise. 

The check is not suµcient, however, baause another pOs could conceivably 
create a new directory somewhere in the �le system and allocate the inLe that had 
previously bHn us1 for "c". �s A is tricked into thinking that it a¨© the 
$rrect inode (see Figure 5.32). Nevertheless, the system maintains its integrity; 
the worst that could happen is that the wrong �le is aª« - a possible sGurity 
breach - but the ra) condition is rare in practi). 

A prZs can unlink a 8le while another pr\s has the �le oqn. (The 
unlinking pos $uld even B the pos that did the open).  Sin) the keëel 
unlKks the inLe at the end of the open 7ll, the unlink call will su¦§. The 
keìel will follow the unlink algorithm as if the �le were not oMn, and it will 
remove the diratory entry for the �le. No other puv will be able 	 aТs 
the now unlinked �le. However, since the open system call had increment1 the 
inode reference $unt, the kernel does not clear the �le contents when executing the 
iput algorithm at the $nclusion of the unlink 7ll. ˍ the oMning process can do 
all the normal �le operations with its �le descriptor, including reading and writing 
the 8le. But when it clŦes the 8le, the inode referen) $unt droä to 0 in iput, 
and the kernel clears the contents ӏ the ļe. In short, the prns that had open1 
the �le áeds as if the unlink did not ;cur, and the unlink hapqns as if the �le 
were not open. Other system calls will $ntinue to work for the opening pr×s, 
tÚ. 

ln Figure 5.33 for example, a ãs opens a �le suppli1 as a parameter and 
then unlinks the �le it just Ûened. The stat 7ll fails Ccause the original ßth 
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Pr� A 

Search dir b for name c 
Get in e number for c 
Finds in e for c l�ked 

Slee­ 

g B 

Unlink kle c 
Find in¡e for c lockZ 

Slee­ 

Wak_ up and c fr[ 
Unlinks c, 

old in¡e free if 
link count 0 

¨ C  

Assign in¡e to new lle n 
Hap¨n to assign 

old in¡e for c 
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in¡e n l�k 

Wak  ̂ up and old c in¡e free 
(now n) 

Get in¡e for n 
Search n for name d 

Time 

Figure 5.32. Unlink Race Condition 
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#include <sys/ty¬s.h> 
#include <sys/stat.h> 
#include <fYtl.h> 

main(argc, argv) 
int argc; 
char •argv(]; 

} 

int fd; 
char bu.1024]; 
struct stat statbuf; 

՝ (argc !- 2) t• need a parameter •t 
exitO; 

fd - o«n(argv{ I ], 0 _ R~NL Y); 
if (fd -- -I) t• o«n fails •t 

exitO; 
if (unlink(argv( I]) -- -I) t• unlink tle just opened •t 

exit(); 
ı (stat (argv( 1), &statbuf) -- -I) t• stat the wle by name•/ 

printf("stat � fails % it should\n", argv(l ]); 
el» 

printf("stat � sucXeded!!!!\n", argv£1 D; 
if (fstat(fd, &statbuf) - -1) t• stat the we by fd •t 

printf(�fstat � fails!!!\n", argv(l ]); 
else 

printf("fstat � sucXeds as it should\n", argv( I]); 
while (read(fd, buf, sizeof(buf)) > 0) t• read open/unlinkf ule •t 

printf("%1024s", buO; t• prints I K  byte reld •t 

Fiϲ˓ 5.33. Unlinking an OĆned File 
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name no longer refers to a Ùle after the Sink (assuming no other p±s creatÍ 
a Úle by that name in the meantime), but the fstat call suÂÎds because it gets to 
the inüe via the vle descriptor. The pr2s l­·, reading the ße 10© bytN at a 
time and printing the wle to the standard output. When the read enÃunters the 
end of the <le, the process exits: After the close in exit, the <le no longer exists. 
ProcNsN commonly create temporary <les and immediately unlink them; they can 
Äntinue to read and write them, but the <le name no longer apĈrs in the 
dirËtory hierarchy. If the čs should fail for some reason, it leavO 1 trail of 
temĊrary ÛlÊ ¾hind it. 
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5.17 q SYSTEM ABSTRACfiONS 

Weinberger introduced fle system types to support his network �le system �e 
[Killian 84] for a brief description of this m«hanism), and the latest release of 
System V sup^rts a derivation of his scheme. File system tyÙ allow the kernel i 
sup^rt multiple ¶le systems simultan­usly, such � network �le systems (ChaÜer 
13) or even �le systems of other o�rating systems. P¢£ uæ the usual UNIX 
system calls to a�s �l®, and the kernel maÛ a generic set of �le o�rations into 
operations s�ci�c to each �le system type. 

File System 
O�rations 

System V o�n 

Remote 

dose 
read 

write 

ropen 
rclÖe 
rrªd 
rwrite 

Generic 
I n&  ̄

System V 
File System lnode 

Remote 
I node 

Figure 5.�. Inodes for File System Typ, 

The inode is the interface �tween the a�tract �le system and the s�ci�c ·le 
system. A generic in-:re inode :ntains data that is inde�ndent of particular ļe 
systems, and Úints to a �le-system-s�ci�c inÕe that contains �le-system-s×i�c 
data. The �le-system-s�ci�c in&e contains information such as a eè �rmissions 
and blÓk layout, but the generic inode contains the device number, inode number, 
êle type, size, owner, and referen¡ count. Other data that is �le-system-s�ci�c 
includ, the super block and directory structures. Figure 5.34 depicts the generic 
in-:re in&e table and two tables of �le-system-sØc in&es, one for System V 
�le system structurZ and the other for a remote (network) inode. The latter i� 
prZumably contains enough information to identify a �le on a remote system. A 
�le system may not have an inode-like structure; but the �le-system-speci�c c&e 
manufactur, an object that satis�es UNIX �le system semantics and allÔat, its 
"in&e" when the kernel allocat, a generic inode. 
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Each tle system ty« has a structure that contains the addresses of functions 
that «rform abstract o«rations. When the kernel wants to acPss a ule, it makm 
an indirect function call, based on the ule system ty¬ and the o¯ation (see 
Figure 5.34). Some aHtract o¬rations are to o¬n a vle, cl¥e it, r_d or write 
data, return an in£e for a wle name Qm°nent Oike <mei and Êt), release an 
in¤e (like iput), update an in£e, chbk aРs ¬rmissions, set xle attributn 
(¬rmissions), and �unt and unmount xle systems. Chapter 1 3  will illustrate the 
use of xle system aItractions in the docription of a distribute wle system. 

5.18 FILE SYSTEM MAINfENANCE 

The kernel maintains consistency of the xle system during normal o¬ration. 
However, extraordinary circumstancl such as a °wer failure may Ouse a system 
crash that leaves a yle system in an inQnsistent state: most of the data in the zle 
system is acceptable for use, but some inconsistencies exist. The command fsck 
checks for such inconsistencies and re§irs the ule system if neclsary. It šŢsl 
the xle system by its block or raw intersce (Chapter 10) and by¨© the regular 
xle access meth¤s. This section describm sevial inconsistencies checked by fsck. 

A disk block may Dlong to more than one in£e or to the list of frf blocks and 
an inode. When a xle system is originally ߍ up, all disk blocks are on the free list. 
When a disk bl k is aÅigned for use, the kernel removl it ~om the frg list and 
assigns it to an inode. The kjnel may not r`ssign the disk bl k to another inode 
until the disk bl k Ј Een retÏed to the frg list. Therefore, a disk block is 
either on the free list or assigned � a single inode. Consider the ±sibilitil if the 
kknel frh a disk bl¡k in a |le, retÐing the bl k number to the in-core Rpy of 
the su­r bl k, and all ated the disk block to a new wle. If the kernel wrote the 
in£e and blocks of the new wle to disk but crashe Efore uªating the in£e of 
the old wle to disk, the two in£es would addros the same disk bl k numEr. 
Similarly, if the kernel wrote the su�r bl¢k and its fr� list to disk and crashed 
before writing the old in£e out, the disk bl k would ap®r on the free list and in 
the old in£e. 

If a bl k numFr is not on the free list of bl ks nor contained in a xle, the {le 
system is inconsistent because, as mentioned above, all blocks must appear 
somewhere. This situation could happen if a bl¡k was removed from a xle and 
plaPd on the su¬r block free list. If the old |le was written to disk and the 
system crashed before the super block was written to disk, the bl k would not 
appear on any lists store on disk. 

An in£e may have a non-0 link count, but its inode numEr may not exist in 
any dirctories in the }le system. ˺l wlm except (unnamed) pipes must exist in 
the xle system tree. If the system crashes after crating a pipe or after crating a 
vle but Ffore creating its dirdtory entry, the in£e will have its link veld set even 
though it dom not appear to E in the wle system. The problem could also arise if a 
directory were unlinkµ Gfore making sure that all wll contained in the directory 
were unlink .́ 



1� SYSBEM ÝĔ �R Ē FILE SYXEM 

If the format of an in�e is inBrrTt (for instance, if the cle ty¡ deld ș an 
undeened value), ¹mething is wrong. This could hap¢n if an administrator 
mounted an impro¢rly formatted cle system. The kernel a�sZ disk blocks that 
it thinks contain inod[ but in rSlity contain data. 

If an in�e number ap¡ars in a directory entry but the in�e is free, the ƈe 
system is inconsistent 2@use an inode number that appSrs in a directory entry 
should be that of an allocatV inode. This could hap¢n if the kernel was crSting 
a new fle and wrote the directory entry to disk but did not write the inode to disk 
3fore the crash. It could also occur if a pr�s unlinked a gle and wrote the 
freed inode to disk. but did not write the dirUtory element to disk bef�e it 
crashed. ThZe situations are avoided by ordering the write o¢rations pro¢rly. 

If the number of free blocks or frX in�[ reDrdV in the su¢r bl�k d� not 
conform to the num2r that exist on disk, the �le system is inCnsistent. The 
summary information in the su¢r bl�k must always 4 consistent with the state of 
the fle system. 

5.19 SUMMARY 

This chapter concludZ the jt part of the 6ok, the explartatio  ̄ of the hle system. 
It introduAd three kernel tabl\: the user ele descriptor table, the system Ğɘ 
table, and the mount table. It dZcri4d the algorithms for many system vlls 
relating to the cle system and their interaction. It intr�ucW cle system 
abstractions, which allow the UNIX system to support varied ile system ty£. 
Finally, it descri5 how fsck ch~ks the consistency of the gle system. 

5.� EXER�S� 

1. 
sider the program in Figu4 5.35. What is the return value for all the reads aX 

what is the contents of the b¦fer? �crir what is hapkning in the kernel during 
%ch read. 

2. Reconsider the pw in Figure 5.35 but sup¤ the sǁtÈent 

ls&k(fd, 9
0L. 0); 

is placed before the 3rst ɲ. What does the pƍs see and what happens i[ide the 
kevel? 

3. A ɘs can ȯ a 3le in write-append mode, meaning that every write operatio\ 
starts at the byte deet marking the current end of 4le. Therefore, two processes can 
o¥n a 3le in write-aplnd mce and write the 3le without overwriting data. What 
happ(s if a proc*s oʡns a 5le ƽ writ$append mode and sYks to the �ginning of 
the 6le? 

4. The standard 1/0 libŸʈ mak] Ǚ r¼ding and writing more e2cient by buff)ng 
the Šʭ in the library Į thus �tentially saving the num�r of system calls a user 
has to make. How w�ld you implem't the library functions /read and fwrite? 
What shgld the library functions fo¥n and fc/'se do? 
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#include <fcntl.h> 
mainO 
{ 

} 

int fd; 
char buøl024]; 
fd - creat("junk", ȧɓ): 
lssk(fd, ȹȺʥ 2); 
write(fd, "hello", 5); 
cläe(fd); 

1• òek to byte 2�0 •1 

fd - o}n("junk", O_R«NLY); 
read(fd, buf, 1024); /• read zero's •/ 
read(fd, buf, 1024); /• catch something •1 
read(fd, buf, 1024); 

g̡࡚  5.
. R>ding ͛ and End of File 
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5. If a procQs is reading data conseÁtively from a Sle, the keîel notes the value of the 
rqd-ahqd blصk in the in�re in,e. What happens if ࣁral p45 
simultanÄusly read data coʐtively from the ñme Éle? 

#include <fcntl.h> 
mainO 
{ 

} 

int fd; 
char butl256]; 

fd - oæn("/etc/passwd", 0 _R¬NLY); 
if (r>d(fd, Ϩ, 1024) < 0) 

printf("r>d fails\n"); 

&ure 5.�. A Big R>d in a Little Buffer 

6. Consider the program in Figure 5.36. What happens whү the program is executed? 
Why? What would happen if the declaration of buf were sandwiched between the 
declaration of two other arrays of size 1024? How doQ the kernel rÃognize that the 
read is tӔ big for the buÈer? 

• 7. The �D Sle system allows fragmentation of the last block of a Sle C needed, 
according to the following rules: 

• Structures similar X the su}r block ksp track of Êee fragments; 
• The kernel doQ not keep a preallocated çol of frr fragments but !ks a frr 

blâk into fragments when ؂؃; 
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• The kÖel # assign blJk äagments only f̀  the last blJk of a ßle; 
• If a bl-k is partitionÎ into se�eral fragments, the k×el can aěign them ן 

diÜÔent �l&; 
' 

• The numgr of fragments in a block is �xÏ ү �le system; 
• The kernel allo8t& fragments during the write system call. 

D2ign an algorithm that allocates block fragments to a �le. What changes must be 
made to the inode to allow ͜ fragments? Hҝ advantageous is it from a 
performance standpoint to 1 fragments for �les that 1 indiĔt blocks? W|ld it 
be ŉ advantage|s to allKate fragments during a close call iĀt:d of during a 
write ¾ll? 

• 8. Re8ll the discussion in ChaptÒ 4 for placing data in a âe's in=e. If the size _ ֢ 
iÿde is that of a disk bl-k. d&ign an algorithm such that the last data 2 a ãe ϡ 
written in the in=e bl-k if it �ts. Compare this meth= with that dÙrihd ω ׄ 
previous problem. 

• 9. System V us2 the fcntl system ¿ll to implement �le and record lKking: 

fcntl (fd, cmd, arg); 

where fd is the �le descriptor, cmd speci�es the type of locking operation, and ʢ 
sčiá various ċrameters, such as lock type (read or write) and byte oÝsets (ʊe ׆ 
appendix). The locking operatioā include 

• T&t for l-ks glonging to other pr*s2 and return immUiately, indi8ting 
whether other lKks were found, 

• ɨ a lćk and sleep until su@Aful, 
• Set a l-k but rÚu� immUiately U unsuâsful. 

The ke�el automatiÀlly rel:so locks ā by a proc&s when it closes the file. 
D&cri¹ an algorithm that implGents �le and rFord locking. If the l-ks are 
mandatory, other pɘə should be preventU from acc2sing the �le. What 
chango must be made to read aв write? 

• 10. If a pɀs gĈ to slÐp while waiting ͯ a �le lock to bÍome åee, the p{sibility for 
deadøck exists: pĕs A may lock �le "one" and attempt to lock �le "two," and 
pös 8 may lock Vle "two" and attempt to lock �le "one." ¤th pɆɇs are in a 
state where they cannot continue. Extend the algorithm of the previous problem ʙ 
that the kÕnel detnts the dÌdlJk situation as it is a¼ut נ �cur and faiś t÷e 
systG call. Is the kÑnel ׅ right plaÁ to check fz deadlJks? 

1 1 .  Befze the existence of a Vle l-king systG 8ll, ʫɨ Âuld get ÄÅating prǀǁ 
to implGent a locking mnhanism by exFuting system calls that exhibited atĉic 
f:turØ. What system calls d&criºd in this chapter could h used? What are ׃ 
¢и inherent in using such meth=s? 

12. Ritchie claims (see (Ritchie SID that �le locking is not suÞcient to prevent the 
confusion caused by proçams such as editors that make a copy of a Vle while editing 
and then write the original àle when done. Explain what he m:nt and comment. 

13. CĊsider another method for locking �l& to prevent destructive update: Supp{e the 
in=e Ãntains a new Črmiĝón setting such that it allows only one proceĜ at a time 
to open the �le for writing, but many prKĮį 8n open the �le for reading. D2cri» 
an implementation. 

• 14. Consider the program in Figure 5.37 that cr:t2 a dirFtory node in the wrong fǣt 
(thÓe are no dirFtory entri& for ..... and " .. "). Try a few commands on the new 
Çry such as Is -1, Is -ld, or cd. What is happening? 
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main(argc, argv) 
int argc; 
char •argv[]; 

if (argc !- 2) 
{ 

EXER�ES 

printf("try: ¾mmand dir5tfy namÅn"); 
exitO; 

} 

1• md? indicate: dir5tfy (04) rwx p*miiion for all •/ 
I* only super usË can do this •1 
if (mknõ(argv[ 1], �777, 0) -- -l) 

printf("mknd fails\n"); 

Figure 5.37. A Half-BakÆ Directory 
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15. Write a program that prints the owner, Jle ty6, aƱs p*missions, and a½ss timÌ 
of files supplied os poromcters. If o �le (poromet�) is a directory, the program should 
read the directory and print the above information for all ӫһ in the directory. 

16. Supye a directory has r4d permission for a user ºt not ex)ute permiiion. What 
hap6ns when the directory is used as a paramÐer to Is with the "-i" option? What 
a¹ut the "-1" útion? Explain the answers. Reûat the problem for the case that 
the dir)tory has exeÁte 6rmissæn but ït r]d gmissçn. 

17. Compare the gmissions a prós must have Ӹ the f÷lowing o6rations and 
comment. 

• Cr]ting a new ×le ݙࡖݖ write þsion in a dir)tory. 
• Cr4ting an existing Jle requires write vwon on the JJe. 
• Unlinking a οle requires write tsion in the dirΉtӘ, oot on the Øle. 

• 18. Writ.e a program that visits ev*y dir)tory, starting with the currÉt dir)tory. How 
should it handle løps in the dir5tory hierarchy? 

19. Ex5ute the preram in Figure 5.38 and descri̧  what happens in the kernel. (Hint: 
Ex5ute pwd when the program ¿mpletÍ.) 

20. Write a program that changes its rùt to a particular dir)tory, and inv?tigate the 
directory tree accΘsible to that program. 

21. Why can't a proc?s undo a previous chޕޔ system call? Change the implementation 
Ä that it can change its ΥΦ back to a prÑious ޓޒ. What are the advantages aî 
disadvantages of such a feature? 

22. Consider the simple pipe example in Figure 5.19, whÊe a p̄ s writes the string 
"hello" in the pipe then reads the string. What would happen if the count of data 
written to the pipe were 1024 instead of 6 (but the Àunt of r4d data stays at 6)� 
What would happen if the order of the rUd and write s�stem calls w*e reversed? 

23. In the preram illustrating the use of named pix (Figure 5.19), what hapýs if 
mk�d discovers that the named pi6 alr4dy Òists? How do? the k*nel implÇent 
this? What would hapün if many r4der and writ* pròÎses aU attÈpted ࠪ 
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main(argc, argv) 
int argc; 
char •argv(J; 

} 

if (argc !- 2) 
( 

} 

printf("need I dir arg\n"); 
exitO; 

if (cbdir(argv[I]) - -1) 
printf("� not a dirÑtory\n", argv[l]); 

«gġ 5.�. Sample Program with Chdir System Call 

communiÉte through the named pipe instAd of the one reader and one writer implicit 
in the text? How euld the pȾsB ensure that only one rAder and one writer 
ê̈́s were communicating? 

24. When opening a named pi7 for reading, a prxÜs slee� · the open until another 
pr.!s oϋns the pi0 for writing. Why? �ldn't the pԸs return succBsfully 
¬ the open, dntinue pȼsing until it triÓ to read from the pi7, and slÕp in the 
read? 

25. How woold y� implement the dup2 (from Version 7) system call wúh syntax 

dup2(oldfd, newfd); 

where oldfd V the äle descriptor מ be duped to $le de�riptor number newfd? What 
should happen if newfd already refers to an open *le? 

• 26. What strange thinë cMld hap�n if the kernel wMld allow two procÞß to mo�t 
th̜  ՠme tHe system simultanØusly at two mount poits? 

27. Sup�e a pryÛs changes its curr×t dir ry to "/mnt/a/b/c" and a second p�s 
then mounts a *le system onto .. /mnt". Should the #unt suÊed? What hap7ns ο 
the çt Ӟs àutB pwd? The üel d{ not allow the m+nt to succeÔ if the 
isde refÚence dunt _ "/mnt" ϟ greater than l .  Comment. 

28. In the algorithm f~ ËÌng a mount zint on rÒnition of " .. " in the nle path 
name, the kernel chÐks three conditùns to ʈe if it is at a mMnt zint: that the 
found inze has the ՂՃ inxe number, that the working inxe is r}t of the *le 
system, and that the path name component is " .. ". Why must it check all three 
enditions? Show that checking any two conditions is insuãcient to allow the proce� 
to čs the mount point. 

29. If a usen mounts a *le systl "rAd-only," the kON Ê a èag in the super block. 
How should it prevent write operations during the write, creal, link, unlink, cho�, 
and chm) system calls? What write o7rations do all the aÆve systk calls do f 
the æe systÖ? 

• 30. Sup�e a p�s attkpts � u$unt a nle systl and anothÙ Ӡs Ϡ 
simultaneously attempting � creal a new åle on that *le system. Only one system call 
can succeed. Explore the Ǹ condition. 
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• 31. When the umount system caU checks that � yre �les are active � a �le system, it 
has a problem with the �le system r4t in.e, all�at� via iget during the mount 
system call and hence having refðrence count grñter than 0. How can uzunt be 
sure there are ʈ active �lM and ࠏ account for the �le system r4t? Consider two 
cas=: 

• uzunt releasN the r4t i�e with the iput algorithm wfore chòking for active 
in.es. (How d� it ̬r if th�e w�e active �l= after aU?) 

• umoum ch�ks for active �lM wf�e releasing the r� in.e but /rmits the r�t 
in.e to remain active. (How active 2n the r4t i�e get?) 

32. When ex�uting the command Is -ld on a dir�tory, note that the numé of links Ϭ 
the directory W never I. Why? 

33. H� does the command mkdir (make a new dir�tory) work? (Hint: When mkdir 
ëmpletN, what are the i�de numbers for ''." and " .. "?) 

• 34. Symbolic links refô to the capability to link �les that exist on diùerent �le systems. 
A new type indicator s/ci�es a symxlic ֫؉ �le; the ќࠍ of the �le is the path name 
of the ûle to which it is linked. Dõcribe an implementation of symxlic links. 

• 35. What happens when a procMs ÷�ut= 

unlink("."); 

What is the current dir�tory of the pʹs? Assume su/ruser /rmi�ions. 
36. Design a system 2ll that trun2tes an existing �le to arbitrary sizN, supplied as an 

argument, and d�cribe ʇ implementation. Impl�ent n system call that allows a 
user to remove a �le segment betwón s�i�� byte ogÀÊ, comp�sing the �le size. 
Without such system ͂ ̓enc.e a program that provid= this functionality. 

37. Descriè all conditio� where the reference count of an in�e can be greater than 1. 
38. In �le system aêtractions, should each Ӫe system ty/ sup�rt a private uk 

o/ration to be 2Ued from the ge~ric c.e, or d� a generic lock o�ration suúce? 
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